QD 120 1873 B42A3E

COLLINS' ELEMENTARY AND ADVANCED SCIENCE SERIES,

Adapted to the requirements of the South Kensington Syllabus, for Students in Science and Art Classes, and Higher and Middle Class Schools.

ELEMENTARY SERIES,

Printed uniformly in Fcap. 8vo, fully Illustrated, cloth lettered, price 1s. each Vol.

- I. PRACTICAL PLANE & SOLID GEOMETRY. By H. Angel, Islington Science School, London.
- 2. MACHINE CONSTRUCTION AND DRAWING. By E. Tomkins, Queen's College, Liverpool. 2 Vols.
- 3A BUILDING CONSTRUCTION—Stone, BRICK, AND SLATE WORK. By R. S. Burn, C.E., Manchester. 2 Vols.
- 3B BUILDING CONSTRUCTION—TIMBER AND IRON WORK. By R. S. Burn, C.E., Manchester. 2 Vols.
- 4. NAVAL ARCHITECTURE—Shipbuilding and Laying off. By S. J. P. Thearle, F.R.S. N.A., London. 2 Vols.
- 5. PURE MATHEMATICS. By Lewis Sergeant, B. A., (Camb.,) London.
- 6. THEORETICAL MECHANICS. By William Rossiter, F.R.A.S., F.C.S., London.
- 7. APPLIED MECHANICS. By William Rossiter, F.R.A.S., London.
- 8. ACOUSTICS, LIGHT AND HEAT. By William Lees, A.M., Lecturer on Physics, Edinburgh.
- MAGNETISM AND ELECTRICITY. By John Angell, Senior Science Master, Grammar School, Manchester.
- 10. INORGÁNIC CHEMISTRY. By Dr. W. B. Kemshead, F.R.A.S., Dulwich College, London.
- II. ORGANIC CHEMISTRY. By W. Marshall Watts, D.Sc., (Lond.,) Grammar School, Giggleswick.
- 12. GEOLOGY. By W. S. Davis, LL.D., Derby.
- 13. MINERALOGY. By J. H. Collins, F.G.S., Royal Cornwall Polytechnic Society, Falmouth.
- 14. ANIMAL PHYSIOLOGY. By John Angell, Senior Science Master, Grammar School, Manchester.
- 15. ZOOLOGY. By M. Harbison, Head-Master Model Schools, Newtonards.
- 16. VEGETABLE ANATOMY AND PHYSIOLOGY. By J. H. Balfour, M.D., Edinburgh University.
- 17. SYSTEMATIC AND ECONOMIC BOTANY. By J. H. Balfour, M.D., Edinburgh University.
- 19. METALLURGY. By John Mayer, F.C.S., Glasgow. 20. NAVIGATION. By Henry Evers L.L. D. Plymouth.

22101678528

L.D.
AND MARINE. By

By Henry Evers,

R.G.S. Jondon. Jurham.

London, Edinburgh, and Herriot Hill Works, Glasge

ADVANCED SCIENCE SERIES,

Adapted to the requirements of the South Kensington Syllabus, for Students in Science and Art Classes, and Higher and Middle Class Schools.

In the Press, and in Preparation, Post 8vo, fully Illustrated, cloth lettered, price 2s. 6d. each volume.

- I. PRACTICAL PLANE AND SOLID GEOMETRY. By Professor F. A. Bradley, London.
- 2. MACHINE CONSTRUCTION AND DRAWING. By E. Tomkins, Queen's College, Liverpool. 2 Vols.
- 3. BUILDING CONSTRUCTION. By R. Scott Burn, C.E. 2 Vols.
- 4. NAVAL ARCHITECTURE—Shipbuilding and Laying off. By S. J. P. Thearle, F.R.S.N.A., London. 2 Vols.
- 5. PURE MATHEMATICS. By Edward Atkins, B.Sc., (Lond.,)
 Leicester.
- 6. THEORETICAL MECHANICS. By P. Guthrie Tait, Professor of Natural Philosophy, Edinburgh.
- 7. APPLIED MECHANICS. By Professor O. Reynolds, Owens College, Manchester.
- 8. ACOUSTICS, LIGHT AND HEAT. By W. S. Davis, LL.D., Derby.
- 9. MAGNETISM AND ELECTRICITY. By F. Guthrie, B.A., Ph.D., Royal School of Mines, London.
- 10. INORGANIC CHEMISTRY. By T. E. Thorpe, Ph.D., F.R.S.E., Professor of Chemistry, Andersonian University, Glasgow. 2 Vols.
- 11. ORGANIC CHEMISTRY. By James Dewar, F.R.S.E., F.C.S., Lecturer on Chemistry, Edinburgh.
- 12. GEOLOGY. By John Young, M.D., Professor of Natural History, Glasgow University.
- 14. ANIMAL PHYSIOLOGY. By J. Cleland, M.D., F.R.S., Professor of Anatomy and Physiology, Galway.
- 15. ZOOLOGY. By E. Ray Lankester, M.A., (Oxon.,) London.
- 16. VEGETABLE ANATOMY AND PHYSIOLOGY. By J. H. Balfour, M.D., Edinburgh University.
- 17. SYSTEMATIC AND ECONOMIC BOTANY. By J. H. Balfour, M.D., Edinburgh University.
- 19. METALLURGY. By W. H. Greenwood, A.R.S.M. 2 Vols.
- 20. NAVIGATION. By Henry Evers, LL.D., Professor of Applied Mechanics, Plymouth.
- 21. NAUTICAL ASTRONOMY. By Henry Evers, LL.D., Plymouth.
- 22. STEAM AND THE STEAM ENGINE—LAND, MARINE, AND LOCOMOTIVE. By Henry Evers, LL.D., Plymouth.
- 23. PHYSICAL GEOGRAPHY. By John Young, M.D., Professor of Natural History, Glasgow University.

London, Edinburgh, and Herriot Hill Works, Glasgow.

QUALITATIVE CHEMICAL ANALYSIS.

A MANUAL

OF

QUALITATIVE CHEMICAL ANALYSIS.

BY

F. BEILSTEIN.

TRANSLATED BY

WILLIAM RAMSAY, D.Na.Sc.

LONDON AND GLASGOW:
WILLIAM COLLINS, SONS, & COMPANY,
1873.

19 02? 199

11	11012
7.8	viel limec
buli	
No.	QV 120
	1873
	B4203E

PREFACE.

THE translation of the present work has been undertaken with a view to furnish laboratory students with a manual, which should contain the principal methods of Qualitative Chemical Analysis. It is well known and extensively used in Germany, and the name of its author cannot fail to be a guarantee of its excellence. The translator has taken the liberty to supply a few omissions; such, for example, as the tests for aluminium, zine, etc., by means of cobaltic nitrate, before the blowpipe.

Objections may be raised to the indiscriminate use of symbols to express indefinite quantities of reagents; it is, however, believed that this will familiarise the student with their formulæ; and if he bear in mind that a formula really expresses, not an undetermined amount, but a molecule of the substance, confusion will be avoided.

A full index has also been added, which will supply a want greatly felt by those who are in the habit of using the German edition.

W. R.

GLASGOW, April, 1873.

ATOMIC WEIGHTS.

I. MONOVALENT ELEMENTS.

н	=	1	K	=	39.1
Cl	_	35 ·5	Na	\equiv	23
Br	=	80	Li	\equiv	7
		128	Ag	=	108
171	_	19			

II. DIVALENT ELEMENTS.

0	=	16	Ba	=	137
		32	Sr	=	87.5
		200	Ca	=	40
		63.4	Mg	=	24
		112	Zn	=	65

III. TRIVALENT ELEMENTS.

N	=	14	A1	=	27.5
P	=	31	Cr	=	52.5
As	=	75	Ur	=	118.8
		122	Fe	=	56
		208	Co	=	60
		196	Ni	=	58
		11	Mn	=	55

IV. TETRAVALENT ELEMENTS.

C	=	12	Sn	=	118
Si			Pt	=	197.4
TI			Pb	=	207

V. HEXAVALENT ELEMENTS.

Mo	=	92	Wo =	= 18
V	_	137		

CHEMICAL ANALYSIS.

EXAMPLES FOR PRACTICE IN ANALYSIS.

I. SODIC CHLORIDE, NaCl.

(Common Salt.)

1. If sodic chloride be heated in a glass tube* sealed

at one end, it decrepitates.

2. A small quantity of sodic chloride when heated in the outer flame of a Bunsen burner, or in the oxidising flame of the blowpipe on the end of a platinum wire, colours it yellow. If a crystal of potassic dichromate, or a slip of paper, tinted with mercuric iodide, be seen in this light, it appears white.

Sodic chloride is easily soluble in water. Its solution

is neutral to test paper.

- 3. Argentic nitrate (AgNO₃), when added to this solution, produces a white curdy precipitate (AgCl), soluble in NH₃, but not in HNO₃; so that if the ammoniacal solution be acidified with HNO₃, AgCl is again precipitated.
- 4. Mercurous nitrate Hg_2 (NO₃)₂ gives a white precipitate of calomel (Hg_2Cl_2), insoluble in HNO_3 , which turns black on addition of NH_3 . ($Hg_2Cl_2 + 2NH_3 = N_2 Hg_2 H_6Cl_2$.)
- * Before each operation the test tube must be thoroughly washed with distilled water. If solid substances are to be heated, the tube must be carefully dried. This may be easily done by heating the tube over a flame, while the air is sucked out by a glass tube

Plumbic acetate (Pb [C₂H₃O₂]₂); white crystalline precipitate, insoluble in HNO₃. Soluble in a large quantity of boiling water, from which long needles of PbCl₂ are deposited on cooling.

II. SODIO CARBONATE, Na₂CO₃ + 10H₂O.

1. On heating in a test tube, water is driven off.

2. Na₂CO₃ colours the flame yellow (vide I., 2).

3. It is soluble in water. The solution has an alkaline reaction, and effervesces on addition of HCl.

III. SODIC SULPHATE, Na₂SO₄ + 10H₂O.

1. When heated in a test tube, it parts with its water of crystallization.

2. Na₂ SO₄ imparts a yellow colour to the flame.

3. If Na_2SO_4 be heated on charcoal, in the reducing flame of the blowpipe, Na_2S is formed. The melted mass is detached from the charcoal, placed on a polished silver coin, and moistened with a few drops of water. Where the Na_2S was in contact with the silver, a black stain is left (Ag_0S) .

4. BaCl₂ added to the neutral aqueous solution, produces a white precipitate of BaSO₄, insoluble in acids.

5. $Pb(C_2H_3O_2)_2$; white precipitate (Pb SO₄), insoluble in acids. On addition of H_2S , the precipitate turns black. $PbSO_4 + H_2S = PbS + H_2SO_4$.

IV. POTASSIC NITRATE, KNO3.

(Saltpetre.)

1. Potassic nitrate melts when heated in a glass tube.

2. When heated on a piece of charcoal before the blow-pipe, it deflagrates.

3. KNO₃ colours the flame violet. If the flame be seen through a glass prism filled with a solution of indigo, it

appears dark red, even when seen through the thickest

part of the prism.

4. Hydric-sodic-tartrate (NaH,C₄H₄O₆) when added to a saturated* solution of potassic nitrate, produces a white precipitate of hydric-potassic-tartrate (KHC₄H₄O₆). In dilute solutions this precipitate does not form at once, but only after standing for some time. If the inside of the test tube be rubbed with a glass rod, the precipitation takes place more readily.

5. Platinic chloride (PtCl₄); yellow precipitate (PtCl₄.2KCl).—[3PtCl₄+4KNO₃ = 2(PtCl₄.2KCl) +

Pt (NO₃)₄].

6. A portion of the solution is mixed with an equal volume of eoncentrated sulphuric acid, and on the mixture cooling, a solution of ferrous sulphate is added carefully; at the point of contact of the two fluids, a brown ring is formed $(2 \text{Fe SO}_4 \text{NO})$.— $[6 \text{Fe SO}_4 + 2 \text{HNO}_3 + 3 \text{H}_2 \text{SO}_4 = 2 \text{NO} + 3 \text{Fe}_2 (\text{SO}_4)_3 + 4 \text{H}_2 \text{O}]$.

7. If a solution of KNO₃ be treated with hydrochloric acid, to which a few drops of indigo solution have been added, and the fluid boiled, the blue colour of the indigo disappears. [3C₈H₅NO(indigo) + 2HNO₃ = 3C₈H₅NO₅

(isatin, reddish-yellow) + 2NO + H₂O.]

8. When dry potassic nitrate is heated with copper foil and concentrated H₂SO₄, brownish red vapours are evolved (NO₂).

V. AMMONIC CHLORIDE, NH4Cl.

1. Ammonic chloride, when heated in a tube, sublimes without previously melting.

2. In a concentrated aqueous solution PtCl₄ produces a yellow crystalline precipitate (PtCl₄.2NH₄Cl).

3. AgNO₃; white precipitate of AgCl (vide I. 3).

4. NaHC4H4O6 gives a white crystalline precipitate

* A saturated solution is prepared by boiling the substance with as small a quantity of the solvent as possible, and filtering off the solution from the undissolved residue.

(NH₄HC₄H₄O₆), soluble in a large quantity of H₂O,

and in NH₃.

5. If the solution of ammonic chloride be mixed with a concentrated solution of NaOH in a basin, NH₃ escapes, which may be recognised by its smell. The vapour colours red litmus paper blue; and if a rod, moistened with acetic acid, or with dilute HCl, be held near the escaping vapour, a white cloud is formed.

VI. SODIC NITRATE, NaNO3.

1. NaNO₃ detonates when heated on charcoal. The residue contains sodic carbonate, which, if brought into contact with moist red litmus paper, changes the red colour to blue. The fused mass, treated with HCl, evolves CO₂.

2. For reactions of Na, see I. 2.

3. For reactions of HNO_3 , see IV. 6.

VII. HYDRIC-DISODIC PHOSPHATE, Na₂HPO₄ + 12H₂O.

1. When heated in a tube, it gives off water. The aqueous solution has an alkaline reaction.

2. AgNO₃ produces a yellow precipitate (Ag₃PO₄),

soluble in NH₃, and in HNO₃.

3. Pb $(C_2H_3O_2)_2$; white precipitate $(Pb_3[PO_4]_2)$

soluble in HNO₃.

4. CaCl_2 , or BaCl_2 ; white precipitate (CaHPO_4 , or BaHPO_4), soluble in HCl. Ammonia added to the solution in HCl, reproduces the precipitate. ($\operatorname{Ca}_3[\operatorname{PO}_4]_2$ or $\operatorname{Ba}_3[\operatorname{PO}_4]_2$) — ($\operatorname{3CaHPO}_4 + \operatorname{3NH}_3 = \operatorname{Ca}_3[\operatorname{PO}_4]_2 + (\operatorname{NH}_4)_3(\operatorname{PO}_4)$.

- 5. NH₄Cl, NH₃ and MgSO₄ are added to the solution of Na₂ HPO₄. A white precipitate (Mg [NH₄]

PO₄) is thrown down.

VIII. SODIC DIBORATE, Na₂B₄O₇ + 10H₂O.

(Borax.)

1. When heated in a tube, sodic diborate bubbles up,

and gives off water.

2. When heated on charcoal, the same takes place; finally, however, it melts, and forms a colourless transparent bead. The concentrated solution has a slightly alkaline reaction.

3. If a hot saturated aqueous solution be treated with concentrated H₂SO₄, glancing crystals (B[OH]₅), deposit

from the liquid on cooling.

4. CaCl₂, or BaCl₂, when added to a concentrated solution of borax, give white precipitates, soluble in excess of water.

5. Turmeric paper, after having been dipped in a solution of sodic diborate previously acidified with HCl, turns

brown on drying.

6. Some sodic diborate is placed in a basin, moistened with H₂SO₄, and alcohol added; on applying light, the alcohol burns with a green flame, which may be intensified by stirring the mixture. The flame is rendered more distinct, if, after allowing the alcohol to burn for some time, it be blown out, and again lighted.

For reactions of sodinm, vide I. 2.

IX. MAGNESIC SULPHATE, MgSO₄ + 7H₂O.

1. On heating in a tube, water is given off.

2. On heating with Na₂CO₃ on charcoal, in the reduction flame, Na₂S is formed (vide III. 3).

In aqueous solution,

3. NaOH, or NH₃ gives a white precipitate (Mg[OH]₂), soluble in NH₄Cl.

4. Na₂CO₃; white precipitate, soluble in NH₄Cl.

5. Ammonic carbonate ([NH₄]₂ CO₃) gives no precipitate; but on addition of Na₂HPO₄,(NH₄)MgPO₄

separates out (vide VII. 5).— $(MgSO_4 + (NH_4)_2CO_3 + Na_2HPO_4 = Mg(NH_4)PO_4 + Na_2SO_4 + NH_4HCO_3)$. For reactions of H_2SO_4 , see III. 4.

X. CALCIC CARBONATE, CaCO₃.

(Marble, Chalk.)

1. CaCO₃ is not altered by being heated in a tube.

2. When heated on charcoal, CO₂ is evolved. The

residue possesses an alkaline reaction (VI. 1).

3. CaCO₃ is insoluble in H₂O, but dissolves in HCl with effervescence. If the gas which is evolved be led into clear lime-water, turbidity is immediately produced, or if a drop of baryta-water be held close over the effer-

vescing fluid, it becomes turbid (BaCO₃).

4. Prepare a neutral solution of CaCl₂, by treating chalk or marble with a quantity of HCl, insufficient to dissolve it. After the evolution of gas has ceased, the solution is heated to boiling, and filtered off from the undissolved marble. If all dissolves, more CaCO₃ must be added.

From this solution,

5. NaOH precipitates Ca(OH)₂, soluble in a large excess of water.

6. NH_3 gives no precipitate, but $(NH_4)_2CO_3$, or Na_2CO_3 ,

throws down a white precipitate of CaCO₃.

7. Na₂ HPO₄; white precipitate (Ca HPO₄, vide VII. 4), soluble in HC₂ H₃ O₂, and in all inorganic acids.

8. Ammonic oxalate ($[NH_4]_2C_2O_4$); white precipitate (CaC_2O_4), insoluble in $HC_2H_3O_2$, soluble in HCl, or in HNO_3 . It is precipitated again from these solutions by HNO_3 .

9. H₂SO₄ gives a white precipitate (CaSO₄) only in concentrated solutions, soluble in a large quantity of water, and also in HCl. It is precipitated from these

solutions on addition of alcohol.

XI. BARIC CHLORIDE, BaCl2 + 2H2O.

1. If heated in a tube, BaCl₂ gives off its water of erystallization.

2. It fuses when heated on charcoal. The residue has

an alkaline reaction.

3. BaCl, colours the flame greenish-yellow.

4. NaOH, added to a concentrated aqueous solution, produces a white precipitate of Ba(OH)₂, soluble in boiling water.

5. NH₃ gives no precipitate, but (NH₄)₂CO₃ gives a

white precipitate of BaCO₃.

6. \hat{H}_2 SO₄; white precipitate (BaSO₄), insoluble in

acids (vide III. 4).

7. A solution of CaSO₄ produces turbidity in solutions of salts of barium, owing to the great insolubility of the resulting BaSO₄.

8. Na₂HPO₄; white precipitate (BaHPO₄), soluble

in HCl (vide VII. 4).

9. Hydro-fluo-silicic acid (SiFl₄.2HFl); white pre-

cipitate (SiFl₄ BaFl₂).

10. $K_2 \operatorname{Cr}_2 O_7$; yellow precipitate (Ba CrO₄), soluble in HCl, but on addition of NH₃ is again precipitated.— (BaCl₂ + $K_2 \operatorname{Cr}_2 O_7 = \operatorname{Ba} \operatorname{Cr} O_4 + \operatorname{Cr} O_3 + 2\operatorname{KCl}$).

For reactions of Cl vide I. 3.

XII. STRONTIC CHLORIDE, SrCl2 + 6H2O.

1. When heated in a glass tube SrCl₂ gives off water.

2. It behaves like BaCl₂ (XI. 2), when heated before the blowpipe.

3. It imparts to the flame a brilliant crimson colour.

4. NaOH, NH₃, Na₂ CO₃ (or [NH₄]₂CO₃), Na₂HPO₄, when added to an aqueous solution of SrCl₂, produce reactions analogous to those of BaCl₂ (XI. 4, 5, 8).

5. H₂SO₄; white precipitate (SrSO₄), insoluble in

acids.

- 6. CaSO₄ produces a slight turbidity after standing for some time.
 - 7. SiFl₄.2HFl, and K₂Cr₂O₇, give no precipitates.

XIII. CALCIC SULPHATE, Ca SO₄ + 2H₂O.

(Gypsum.)

1. When heated in a tube, water is given off.

2. When heated before the blowpipe with sodic carbonate, it is reduced to sulphide.

It dissolves with difficulty in H₂O, but more easily in

HNO3.

3. $(NH_4)_2C_2O_4$, when added to the aqueous solution produces a white precipitate CaC_2O_4 .

4. BaCl₂; white precipitate (BaSO₄).

5. Alcohol added to the aqueous solution produces a white precipitate (CaSO₄), owing to its not being so soluble in a mixture of alcohol and water (X. 9).

XIV. AMMONIC ALUMINIC SULPHATE, Al $[NH_4]$ $[SO_4]_2 + 12H_2O$.

(Ammonia Alum.)

1. When heated in a glass tube, water is evolved.

2. It is converted into sulphides when heated before

the blowpipe with Na₂CO₃.

3. Ammonia when added to the aqueous solution produces a white precipitate (Al[OH]₃), insoluble in excess of the precipitant.

4. NaOH; white precipitate (Al[OH]₃), soluble in

excess, but again precipitable by NH4Cl.

5. Na₂CO₃; white precipitate (Al[OH]₃), with evolution of CO₂. (3Na₂CO₃ + 2(NH₄)Al(SO₄)₂ + 3H₂O = 2Al(OH)₃ + 3CO₂ + 3Na₂SO₄ + [NH₄]₂SO₄).

6. (NH₄)₂S; white precipitate (Al[OH]₃), with evolu-

tion of H_2S . $(3[NH_4]_2S + 2[NH_4]Al[SO_4]_2 + 6H_2O$ = $2Al(OH)_3 + 3H_2S + 4[NH_4]_2SO_4$).

Reactions for H₂SO₄, vide III. 4. For those of ammonia, vide V. 5.

XV. POTASSIC DICHROMATE, K2Cr2O7.

1. When heated in a glass tube, it fuses, forming a dark red fluid.

2. It deflagrates slightly when heated on charcoal. The

- residue consists of Cr_2O_3 and K_2CO_3 .

 3. Before the blowpipe with microcosmic salt or borax, it gives a green bead, both in the reducing and oxidising flames.
- 4. (NH₄)₂S, added to the orange-coloured aqueous solution, gives a brown precipitate (Cr₂[CrO₄]₃), accompanied by the separation of sulphur. The solution contains yellow $K_2 Cr O_4 \cdot (5 K_2 Cr_2 O_7 + 3(NH_4)_2 S = Cr_2 (Cr O_4)_3$ $+S_3 + 5K_2CrO_4 + 6NH_3 + 3H_2O$). If the solution, after being saturated with (NH₄)₂S, be heated to boiling, green Cr[OH]₃ is precipitated, besides more sulphur (K₂Cr₂O₇ + $\frac{5}{3}[NH_4]_2S + H_2O = 2Cr[OH]_3 + S_3 + 2KOH + 6NH_3).$

5. $(PbC_2H_3O_2)_2$; yellow precipitate $(PbCrO_4)$, insoluble

in dilute HNO3, but dissolving readily in NaOH.

6. $\mathrm{Hg}_{2}(\mathrm{NO}_{3})_{2}$; bright red precipitate ($\mathrm{Hg}_{2}\mathrm{CrO}_{4}$). 7. AgNO₃; brownish red precipitate (Ag₂CrO₄).

8. The aqueous solution of SO2, reduces potassic di-

chromate to the state of green chromic salt.

9. When boiled with concentrated HCl, chlorine is given off, and a green solution of CrCl3 remains behind. The reaction is more easily obtained on addition of some drops of alcohol $(K_2Cr_2O_7 + 8HCl + 3C_2H_6O = 2CrCl_3 +$ $2KCI + 3C_2H_4O$ (aldehyde) + $7H_2O$).

10. NaOH, added to this solution, produces a green precipitate (Cr[OH]₃), which is soluble in excess of the

precipitant, but is re-precipitated on boiling.

11. NH3; a precipitate of a greyish-blue colour,

slightly soluble in excess. The solution has a reddish colour.

12. (NH₄)₂S; precipitate of Cr [OH]₃.

13. Na₂CO₃; green precipitate of a basic salt.

XVI. IRON, Fe.

1. A thin piece of iron wire burns when held in the

blowpipe flame, forming Fc₃O₄.

2. Iron dissolves in warm HCl, with evolution of H, and deposits a residue of insoluble carbon. The solution should contain excess of iron, and should be boiled till the evolution of H ceases.

3. In this solution of FeCl₂ (Ferrous chloride) NaOH, or NH₃, produces a greenish-white precipitate (Fe[OH]₂), which turns first green, and finally reddish-brown, when exposed to the air, forming Fc(OH)₃.

4. Na₂CO₃; white precipitate, turning rapidly brown

by absorption of oxygen.

5. $(NH_4)_2S$; black precipitate (FcS), soluble in HCl,

with evolution of H₂S.

Boil the solution of FeCl₂ with a few drops of HNO₃. It rapidly assumes a yellow colour, and contains ferric salts; at the same time N_2O_2 is given off. $4HNO_3 = 2FeCl_3 + Fe(NO_3)_3 + NO + 2H_2O.$) $(3 \text{FeCl}_2 +$

6. NaOH, NH3, or Na2CO3 added to this solution give

reddish-brown precipitates (Fe[OH]₃).

7. H₂S; pure white precipitate of S. The solution contains iron in the dyad state.

8. (NH₄)₂S; black precipitate of FeS and S.

9. Potassic-ferrocyanide (4KCN.Fc[CN]₂); dark blue precipitate (Prussian blue — Fe₇[CN]₁₈ = 4 Fe CN₃. 3 Fe [CN].).

10. Potassic sulphocyanide (KCNS); blood-red colour-

ation (Fe[CNS]₃).

11. BaCO₃ suspended in water gives a brown precipitate of $Fc(OH)_3$, with evolution of CO_2 .

12. If a portion of the precipitates, obtained as directed

in XVI. 3-6, be heated before the blowpipe in the reducing flame, with a bead of microcosmic salt, a green bead is produced, which turns red when held in the oxidising part of the flame. When cold the colour of the bead will have partially or totally disappeared.

XVII. MANGANIC DIOXIDE, MnO2.

1. When heated strongly, in a glass tube, it yields up a portion of its oxygen. A glowing splinter of wood, when inserted into the tube, commences to burn with a bright flame.

2. MnO_2 is insoluble in H_2O , in H_2SO_4 , and in

HNO₃; but dissolves in HCl, with evolution of Cl.

3. Boil some MnO₂ with concentrated HCl, till the chlorine is no longer given off, and filter off from the excess of MnO₂. Add Na₂CO₃ till a precipitate is produced, which does not disappear on shaking the liquid. Add a few drops of HC₂H₃O₂ to dissolve the precipitate, and then an excess of $\tilde{Na}\tilde{C_2}\tilde{H_3}O_2$, and boil. The resulting precipitate of basic ferric acetate is filtered off, dissolved in HCl, and the presence of iron proved according to the directions in XVI. 9, 10.

In the filtrate, which contains the manganese,

4. NaOH or NH3 gives a white precipitate of Mn(OH)2, rapidly turning brown in the air (Mn2O3). In presence of NH₄Cl, NH₃ produces no precipitate.

5. Na₂CO₃ or (NH₄)₂CO₃; white precipitate (MnCO₃). 6. (NH₄)₂S; flesh-coloured precipitate of MnS, soluble

in HCl.

7. MnO₂, boiled with Pb₃O₄ and HNO₃, is oxidised to HMnO₄ (permanganic acid), the solution of which has a deep red colour.

8. When heated with a bead of microcosmic salt before the blowpipe, MnO2 gives an amethyst-coloured bead, which becomes colourless in the reducing flame.

9. If MnO₂ and Na₂CO₃, with the addition of a small

quantity of KNO₃, be fused on a piece of platinum foil, a greenish-blue mass results (Sodic manganate Na₂MnO₄).

XVIII. ZINC, Zn.

1. When heated on charcoal, it burns with a white flame, giving a white smoke (ZnO), and leaving a deposit on the charcoal, which is yellow when hot, and grows white on cooling, and which is not volatile.

2. Zn is soluble in HCl, with evolution of H. Boil excess of Zn with HCl till the effervescence ceases, and

filter off the colourless solution of ZuCl₂.

3. NaOH, or NH₃, added to this solution give a white precipitate (Zn[OH]₂) soluble in excess of the precipitant.

4. Na₂CO₃; white precipitate of a basic salt. Carbonic

anhydride is evolved.

5. H₂S; white precipitate (ZnS), soluble in HCl. If the solution of ZnCl₂ contain much free HCl, H₂S fails to give a precipitate.

6. $(NH_4)_2S$; white precipitate (ZnS), insoluble in

HC₂H₃O₂.

XIX. NICKEL SULPHATE, NiSO₄ + 7H₂O.

1. NaOH, added to the aqueous solution, produces a green precipitate of Ni(OH)₂.

2. NH₃; Ni(OH)₂, soluble in excess of the precipitant.

3. Na₂CO₃; green precipitate of a basic salt (2NiCO₃. 3Ni [OH]₂).

4. (NH₄)₂CO₃; green precipitate, soluble in excess.

5. $(NH_4)_2^2S$; black precipitate (NiS), insoluble in HCl. If a portion of this precipitate be heated with a bead of microcosmic salt, in the blowpipe flame, the bead assumes a colour, varying, when hot, from red to reddish-brown, and when cold from yellow to orange.

XX. COBALTIC NITRATE, $Co(NO_3)_2 + 5H_2O$.

1. NaOH precipitates a blue-coloured basic salt from the aqueous solution of cobaltic nitrate; on boiling, the precipitate changes to a dirty red colour (Co[OH]₂).

2. NH₃; blue precipitate of a basic salt, soluble in

excess of the precipitant to a red liquid.

3. (NH₄)S₂; black precipitate (CoS), insoluble in HCl. Some of the precipitate, investigated before the

blowpipe gives, in either flame, a blue bead.

4. Potassic nitrite (KNO₂), added to a solution which has been acidified with $HC_2H_3O_2$, produces a yellow precipitate after some time (Co[OH]K₃[NO₂]₅).(Co[NO₃]₂ + 6 KNO₂ + HC₂H₃O₂ = Co[OH]K₃[NO₂]₅ + 2 KNO₃ + KC₂H₃O₂ + NO).

XXI. LEAD, Pb.

1. Lead, when heated on charcoal before the blowpipe, melts, and coats the charcoal with a yellow deposit (PbO).

2. Lead is insoluble in HCl, and in H₂SO₄, but dissolves in HNO₃, with evolution of NO. (3Pb+8HNO₃)

 $= 3Pb[NO_3]_2 + 2NO + 4H_2O).$

3. From neutral solutions of lead, zinc precipitates

metallic lead in a crystalline state.

4. H₂S; black PbS, insoluble in acids. When boiled with concentrated nitric acid, it is resolved into PbSO₄; white, and insoluble in acids.

5. NaOH; white precipitate (Pb[OH]₂), soluble in a

large excess of the precipitant.

6. NH₃; white precipitate of a basic salt, soluble in excess.

7. Na₂CO₃; white PbCO₃.

8. $H_2\tilde{S0}_4$; white $PbSO_4$ insoluble in acids, but easily soluble in ammoniacal solution of $H_2.C_4H_4O_6$. On addition of $(NH_4)_2S$, $PbSO_4$ turns into PbS.

9. **HCl**; white PbCl₂, soluble in a large quantity of boiling water (vide I. 5).

10. K₂Cr₂O₇; yellow precipitate of PbCrO₄ (vide XV.

5).

11. (NH₄)₂S; black precipitate (PbS).

XXII. BISMUTH, Bi.

1. When heated in a glass tube, metallie bismuth fuses

without volatilising.

2. If heated on charcoal before the blowpipe it fuses, giving a yellow incrustation (Bi₂O₃) and a brittle metallic globule.

Bismuth is soluble in eoneentrated HNO₃ with evolu-

tion of NO.

3. $\rm H_2O$, added to a solution of Bi in $\rm HNO_3$, throws down a white, erystalline, basic salt (BiONO₃ + $\rm H_2O$). If much nitrie acid be present, the precipitate does not appear till some NaCl, or HCl, has been added. In this ease, bismuthyl chloride (BiO.Cl) is formed (Bi[OH]₂ $\rm NO_3 + NaCl = BiO.Cl + NaNO_3 + H_2O$).

4. H₂S, or (NH₄)₂S; blackish-brown precipitate of

Bi₂S₃, soluble neither in (NH₄)₂S, nor in dilute acids.

5. NaOH, or NH₃; white precipitate (Bi[OH]₃), insoluble in excess.

6. $K_2Cr_2O_7$; yellow precipitate ([BiO].Bi[CrO₄]₂), insoluble in NaOH, but soluble in HNO₃.(2Bi[NO₃]₃ + $K_2Cr_2O_7 + 2H_2O = [BiO]Bi[CrO_4]_2 + 2KNO_3 + 4HNO_3$).

XXIII. COPPER, Cu.

Copper is soluble in HNO₃, with evolution of NO.

1. Fe (iron wire) precipitates metallic copper from the solution of cupric nitrate ($Cu[NO_3]_2$).

2. NaOH; blue precipitate (Cu[OH]_o), which turns

black on being boiled (CuO).

3. NH3; greenish-blue precipitate of a basic salt,

which dissolves in excess of the precipitant with a deep

blue colour (Cu[NO₃],4NH₃).

- 4. H₂S; black precipitate (CnS). Heat a portion of the precipitate, mixed with sodic carbonate, on charcoal before the blowpipe, and reduce the melted mass to powder, by rubbing in an agate mortar with a little water. If the particles of carbon be removed by decantation, small glancing particles of metallic copper are left behind.
- 5. (NH₄)₂S; black precipitate (CuS), insoluble in dilute acids in the cold, and almost insoluble in the precipitant. Before the blowpipe the precipitate, when heated on borax in the oxidising flame, gives a green bead, which becomes red and opaque when removed to the reducing flame.

6. 4 KCN Fe (CN₂); reddish-brown precipitate

(2Cu[CN]₂.Fe[CN]₂), insoluble in acids.

XXIV. CADMIUM, Cd.

1. Cadmium heated before the blowpipe finses and volatilises, leaving a brown incrustation on the charcoal (CdO).

2. Cadmium dissolves slowly in H₂SO₄ and in HCl,

but easily in HNO_3 to $Cd(NO_3)_2$.

3. Metallic Zn precipitates from this solution metallic cadmium.

4. H₂S; yellow CdS, insoluble in NH₃.

5. $(NH_4)_2S$; yellow CdS, insoluble in the precipitant.

6. NaOH; white Cd(OH), insoluble in excess.

7. NH₃; white Cd(OH)₂, easily soluble in excess of NH₃.

8. Na₂CO₃; white CdCO₃.

XXV. MERCURY, Hg.

1. Mercury dissolves with ease, in slightly warm HNO_3 . The solution may be decanted from the excess of mercury, and consists of $Hg_2(NO_2)_2$.

2. Cu (copper-foil); metallic mercury.

SO₂; gray, metallic mercury.
 H₂S, or (NH₄)₂S; black Hg₂S.

5. NaHO; black Hg₂O.

6. NH₃; black amido-compounds (N.Hg₂H₂HNO₃).

7. HCl; white Hg₂Cl₂ (calomel). 8. KI; greenish-yellow Hg₂I₂.

Add to the solution of $Hg_2(NO_3)_2$ some concentrated HNO_3 , a few drops of HCl, and boil till the precipitate disappears.

In this solution (Hg[NO₃]₂), 9. Cu; metallic mercury,

10. Stannous chloride (SnCl₂); a white precipitate of Hg₂Cl₂ is produced; on addition of more SnCl₂, gray,

metallic mercury.

11. NaOH; brown precipitate of a basic salt; on addition of more NaOH, is changed into yellow HgO. Heat a portion of the latter precipitate in a glass tube, when metallic mercury will sublime, and may be formed into a globule by rubbing.

12. NH₃; white precipitate of an amido-compound.—

(N₂Hg₃H₂[NO₃]₂.)

13. Na₂CO₃; reddish-brown precipitate of a basic salt

 $(HgCO_3.3HgO)$.

14. H_2S , or $(\text{NH}_4)_2\text{S}$, added in small quantity, produce a white precipitate (2HgS.Hg[NO₃]₂), which by addition of more of the precipitant turns to HgS.

15. KI; red precipitate (HgI₂), soluble in excess of KI.

16. HCl produces no precipitate.

XXVI. SILVER, Ag.

1. Dissolve a silver coin in HNO₃, and precipitate the silver as chloride (AgCl) by adding HCl to the solution, which has a blue colour owing to the presence of copper (Cu[NO₃]₂). Shake the solution and filter it. The precipitate (AgCl) is well washed with hot water, dried, and fused in a porcelain crucible. As soon as the melted

TIN. 25

mass has grown cold, a little water is poured on the top, a piece of zinc laid on it, and a few drops of HCl added. After a few hours the undissolved zinc is removed, the metallic silver boiled with some HCl, and washed with water repeatedly by decantation, then dissolved in HNO_3 . The solution of $AgNO_3$ is evaporated carefully to dryness, and the dry residue dissolved in H_2O . The solution is filtered.

2. Cu.; metallic Ag. The blue solution contains $Cu(NO_3)_2$.

3. H_2S , or $(NH_4)_2S$; black precipitate (Ag_2S) .

4. NaOH; dark brown precipitate (Ag₂O).

5. NH₃; brown precipitate (Ag₂O), easily soluble in excess of the precipitant. If free acid be present in the solution of AgNO₃, NH₃ produces no precipitate.

6. Na₂HPO₄; yellow precipitate (Ag₃PO₄), soluble in

NH₃ and in HNO₃.

7. HCl; white curdy precipitate of AgCl, soluble in NH₃, insoluble in HNO₃. If exposed to the light, it assumes a violet colour.

XXVII. TIN, Sn.

- 1. When heated on charcoal, before the blowpipe, it fuses, and when exposed to the outer flame, is oxidised to SnO₂.
- 2. Tin is soluble in concentrated boiling HCl, with evolution of H.
- 3. Zn precipitates crystalline metallic Sn from this solution.
 - 4. NaOH; white Sn (OH)₂, soluble in excess.
 5. NH₃; white Sn (OH)₂, insoluble in excess.
 - 6. Na₂CO₃; white Sn (OH)₀, with evolution of CO₂.

7. H₂S; dark brown precipitate (SnS).

8. $(NH_4)_2S$; dark brown SnS, soluble in yellow ammonic sulphide (i.e., $[NH_4]_2S$, in which sulphur is held in solution). HCl added to this solution gives a yellow precipitate of SnS₂.

If Sn be heated with HNO₃, it forms white insoluble metastannic oxide (SnO₂). As soon as the precipitate has a pure white colour, the acid is poured off, the residue washed with water by means of decantation, boiled with concentrated HCl, and water added to the solution, which is then filtered.

9. NaOH produces a white precipitate (SnO[OH]₂),

soluble in excess.

10. NH₃; white precipitate of SnO(OH)₂, insoluble in excess.

- 11. Treat a portion of the precipitate as directed in XXIII. 4. White, glaneing, malleable, metallic beads are obtained.
- 12. The solution of Sn is diluted largely with water, and boiled. White precipitate, $SnO(OH)_2$.

XXVIII. ANTIMONY, Sb.

1. When antimony is heated in a glass tube it fuses, but does not sublime.

2. If heated before the blowpipe, on charcoal, it melts, and gives a white, volatile incrustation (Sb₂O₃). The fused bead of antimony continues to burn spontaneously, forming white vapours, and becomes eovered with needle-shaped crystals of Sb₂O₃.

3. Antimony is insoluble in HCl; HNO₃ changes it to white, insoluble SbO₂; but in a mixture of these acids (three volumes of the former to one of the latter), it is

soluble. The solution contains SbCl₃.

4. H_20 ; white "powder of algaroth" (SbOCl). The precipitate dissolves in $H_2.C_4H_4O_6$. Accordingly, if this acid be present, water fails to produce a precipitate.

5. H₂S; orange-red coloured precipitate (Sb₂S₃).

6. (NH₄)₂S; orange-red coloured precipitate, soluble in excess of the precipitant, but is again precipitated by HCl.

7. NH₃; white Sb(OH)₃, insoluble in excess.

8. Zn; metallic Sh. If the reduction be performed in

a piece of platinum foil, or on a capsule, the Sb deposits on the platinum in black spots, difficult to remove.

XXIX. ARSENIC, As, and ARSENIC ANHYDRIDE, As₂O₃.

- 1. Arsenic heated before the blowpipe, gives off white fumes of As₂O₃. A smell resembling garlic may be perceived.
- 2. When heated in a tube, arsenie sublimes, giving a brilliant metallic mirror.
- 3. Metallic arsenic, heated with a small quantity of HNO_3 , gives As_2O_3 , which is but slightly soluble. If heated with an excess, H_3AsO_4 is formed, easily soluble in water.
- 4. As₂O₃; when heated in a glass tube sublimes, and deposits, in the eool part of the tube, as crystals, which may be easily seen by aid of a lens.

5. If As₂O₃ be heated in a tube, with a fragment of charcoal, it is reduced, and a mirror of As is deposited in

the eool part of the tube.

6. As₂O₃ heated on charcoal sublimes; and gives off a smell resembling garlic; when volatilized from a porcelain crucible, no smell is perceptible.

As₂O₃ is soluble in water, but with difficulty.

7. H₂S added to this solution, gives a yellow colouration. On addition of HCl, yellow As₂S₃ is precipitated, which is soluble in NH₃ and (NH₄)₂S, but may be again precipitated by adding an acid.

8. $(NH_4)_2S$ gives no precipitate; but on adding HCl,

a yellow precipitate (As₂S₃) is produced.

9. AgNO₃ gives no precipitate; but on addition of a drop of NH₃, Ag₃AsO₃ is thrown down, which dissolves in excess of NH₃, and in HNO₃.

As, O₃ dissolves, when boiled with HNO₃.

10. H_2S gives, in a lukewarm solution, when an excess is employed, yellow As_2S_3 , and free S.

11. AgNO₃ gives no precipitate. If the liquid be

carefully neutralised with NH₃, a reddish-brown precipitate of Ag₃AsO₄ is produced, which is easily soluble in

NH₃, and in HNO₃.

12. On addition of excess of NH₃, NH₄Cl, and MgSO₄, a white precipitate (Mg[NH₄]AsO₄, analogous to that produced by phosphoric acid (see VII. 5), is formed.

XXX. POTASSIC CHLORATE, KClO3.

1. When heated in a tube, KClO₃ fuses, and gives off oxygen (vide XVII. 1). The residue contains KCl. It is dissolved in water and AgNO₃ added, when a curdy precipitate (AgCl) is formed (vide XXVI. 7).

2. If heated on charcoal, deflagration ensues.

3. If a small quantity of KClO₃ be treated with concentrated H_2SO_4 , and the mixture gently heated, a yellow explosive gas (ClO₂) is evolved; the KClO₃, at the same time, assuming a yellow colour $(3 \text{ KClO}_3 + 2 \text{ H}_2 \text{ SO}_4 = 2 \text{ ClO}_2 + \text{ KClO}_4 + 2 \text{ KHSO}_4 + \text{ H}_2\text{ O})$.

4. If the dry salt be heated with HCl, a yellowish-

green gas escapes—a mixture of Cl and HClO.

5. KClO₃ is more easily soluble in hot than in cold water. In this solution neither AgNO₃ nor Hg₂ (NO₃),

produce a precipitate.

6. Add a few drops of indigo-solution, some H₂SO₄, and then an aqueous solution of SO₂ drop by drop. The colour of the indigo disappears, owing to the formation of lower oxides of chlorine.

XXXI. SODIC SILICATE.

(Soluble Glass.)

1. The aqueous solution of soluble glass, if treated with an acid (HCl, HNO₃), or with NH₄Cl, or (NH₄)₂CO₃, deposits silicic acid (Si[OH]₄).

2. This silicic acid may be rendered insoluble, if the

soluble glass be acidified with HCl, and evaporated to dryness. A few drops of HCl are added to the residue, then some water, and the fluid is boiled.

3. The silicic anhydride (silica, SiO₂), which separates out, is collected on a filter. If heated with microcosmic salt, before the blowpipe, an opaque bead is produced.

4. Evaporate the solution left after the removal of the

SiO₂. Nothing remains but NaCl (vide I).

'XXXII. HYDRIC POTASSIC OXALATE, KHC₂O₄ + H₂O.

1. When heated in a tube, water is evolved; the mass blackens, and when the temperature has risen sufficiently, a gas is evolved (CO), which burns with a blue flame. The residue consists of K₂CO₃, exhibits an alkaline reaction, and effervesces with acids.

2. Some KHC₂O₄ is mixed with MnO₂ in a tube, and

H₂SO₄ added. CO₂ is evolved with effervescence.

3. CaCl₂, added to the aqueous solution, produces a white precipitate (CaC₂O₄). Vide X. 8.

4. Pb(C₂H₃O₂)₂; white precipitate of PbC₂O₄, soluble

in HNO₃.

5. If the dry salt be heated in a tube with concentrated H_2SO_4 , a mixture of gases escapes, which renders limewater turbid (CO_2), and burns with a blue flame (CO_2).

XXXIII. SODIC HYPOSULPHITE, Na₂S₂O₃ + 5H₂O.

1. When heated in a tube, water is evolved. The residue consists of Na₂S and Na₂SO₄; it is dissolved in water, and to a part of the solution some HCl is added. H₂S escapes; and if some BaCl₂ be added, BaSO₄ is precipitated. To another portion of the solution some AgNO₃ is added; a black precipitate is thrown down (Ag₂S). To the remainder of the solution, add some sodic nitro-prusside Na₂Fe(NO)(CN)₅; violet colouration.

2. On addition of HCl to the aqueous solution, sulphur

is precipitated; the precipitation is accelerated by heat. SO_2 may be recognised at the same time by its pungent smell.

3. $Pb(C_2H_3O_2)_2$; white precipitate (PbS_2O_3) , which blackens in boiling, owing to the formation of $PbSPbS_2O_3 + H_2O = PbS + H_2SO_4$.

4. BaCl₂; white precipitate (BaS₂O₃), soluble in a large

amount of water.

5. FeCl₃; violet colouration, disappearing in a short time.

XXXIV POTASSIC IODIDE, KI.

1. AgNO₃ added to the aqueous solution, gives a yellow precipitate of KI, which is soluble in NH₃ and HNO₃.

2. HgCl₂; red precipitate of HgI₂.

3. $Hg_2(NO_3)_2$; greenish-yellow, Hg_2I_2 .

4. $Pb(C_2H_3O_2)_2$; yellow PbI_2 , soluble in a considerable quantity of boiling water. On cooling, glittering crystals

are deposited.

5. The solution is acidified with a few drops of $\mathbf{H}_2\mathbf{SO}_4$, some starch solution added, and then \mathbf{KNO}_2 (potassic nitrite), drop by drop. The liquid assumes a deep blue colour. $(\mathbf{KI} + \mathbf{H}_2\mathbf{SO}_4 + \mathbf{KNO}_2 = \mathbf{I} + \mathbf{NO} + \mathbf{K}_2\mathbf{SO}_4 + \mathbf{H}_2\mathbf{O})$.

6. Some $K_2Cr_2O_7$ and concentrated H_2SO_4 are added to the solution, and iodine is set free, which escapes as violet

vapours when the solution is boiled.

7. Boil the solution with $FeCl_3$, iodine is given off. $(FeCl_3 + KI = I + FeCl_2 + KCl)$.

XXXV. STRONTIC SULPHATE, SrSO4.

(Celestin.)

1. SrSO₄ is not altered by heat.

2. If heated on charcoal, before the blowpipe, with Na₂CO₃, strontic sulphide is formed, which is insoluble in water and in acids.

3. If SrSO₄ be boiled with a solution of Na₂CO₃, and

filtered while boiling, some HCl added to the filtrate, and then BaCl, a precipitate of BaSO₄ is thrown down.

4. The precipitate, insoluble in Na₂CO₃, which consists of SrCO₃, is dissolved by pouring some HCl through the filter. CaSO₄ added to the filtrate, produces a turbidity

after lapse of time.

5. If SrSO₄ be boiled with a solution of two parts of K_2CO_3 and one part of K_2SO_4 , and the liquid filtered while boiling; the residue after being washed out with H_2O , dissolved in HCl, and evaporated to dryness; some alcohol added to the residue (SrCl₂), and ignited; a crimson-red colour is imparted to the flame.

XXXVI. BARIC SULPHATE, BaSO4.

(Heavy spar.)

1. When heated in a tube BaSO₄ remains unaltered.

2. Heated with Na_2CO_3 , on charcoal, before the blow-pipe, a sulphide is produced. BaSO₄ is insoluble in H₂O, and in acids.

3. If BaSO₄ be repeatedly boiled with successive quantities of Na₂CO₃, and the solution filtered while boiling, it may be decomposed. The solution contains Na₂SO₄ (vide XXXV. 3).

4. The insoluble (BaCO₃) may be dissolved by pouring HCl through the filter in which it has been collected. CaSO₄ added to the solution produces an instantaneous

precipitate (BaSO₄).

5. The mixture of K₂CO₃ and K₂SO₄ does not act decomposingly on BaSO₄ (vide XXXV. 5). The residue, filtered off, and treated with HCl, does not dissolve.

XXXVII. POTASSIC CYANIDE, KCN.

1. HCl added to the aqueous solution liberates hydroeyanie acid (prussie acid, HCN), which may be recognised by its smell, resembling bitter almonds. It is excessively poisonous.

2. AgNO₃; white, curdy precipitate (AgCN), easily soluble in excess of KCN, and in NH₃, but insoluble in

 HNO_3

3. Add to the solution of KCN, FeCl₃, FeSO₄, and NaOH, till a precipitate is formed, and heat gently. After the liquid is acidified with HCl, the ferric oxide dissolves, and a precipitate of "Prussian blue" remains

undissolved $(3Fc[CN]_24Fc[CN]_3)$.

4. This precipitate, after being filtered and washed with water, is removed to a test-tube, and treated with NaOH. Fc(OH)₃ is precipitated, and the solution contains 4KCN.Fe(CN)₂; after again acidifying with HCl, however, Prussian blue is again thrown down.

XXXVIII. PLUMBIC ACETATE, $Pb(C_2H_3O_2)_2 + 3H_2O$.

1. When heated in a tube, water is given off; then $HC_2H_3O_2$ volatilises. When a higher heat is applied, only carbon and metallic lead remain behind.

2. If heated on charcoal, before the blowpipe, with Na_2CO_3 , a malleable metallic bead is formed, and the charcoal is coated with a yellow incrustation (PbO).

3. Heat in a tube, with concentrated H₂SO₄; HC₂H₃O₂ is liberated, which may be recognised by its smell, and

by its action on litmus-paper.

4. If some alcohol be added to crystals of the salt in a test-tube, an equal volume of concentrated H₂SO₄ added, and the mixture heated, acetic ether (C₂H₅O.C₂H₃O) is evolved, which may be identified by its pleasant fruity odour.

SYSTEMATIC COURSE OF ANALYSIS.

A.—PRELIMINARY EXAMINATION.

I. Heat some of the Substance in a Test-tube.

If a liquid, a portion must be evaporated to dryness, and submitted to the following tests:—

1. Water is evolved, which has either an alkaline (NH₃), an acid (HCl, SO₂, etc.), or a neutral reaction (water of

crystallisation).

2. A sublimate is formed: reddish-yellow drops solidifying to a yellow-coloured mass on cooling (S). A white sublimate may consist of ammonium salts, HgCl₂, Hg₂Cl₂, As₂O₃, Sb₂O₃. A yellow sublimate may be HgI₂, or As₂S₃. Black sublimate; HgS, which, when rubbed, assumes a red tint. Metallic mirror, As; small metallic globules,

Hg.

3. Evolution of gas. Oxygen; substances containing HClO₃, and HNO₃.—Some metallic oxides—Carbonic oxide; oxalates.—Carbonic anhydride; carbonates (the gas renders baryta-water turbid).—Ammonia; ammonium salts.—Sulphurous anhydride; easily recognisable by its smell, and acid reaction.—Hydric sulphide.—Cyanogen; has a penetrating odour, and burns with a red flame.—Nitric peroxide (NO₂) nitrates; reddish-coloured gas.

4. The substance fuses; presence of alkaline salts.

5. The substance does not fuse, but changes colour.—The substance, originally white, turns yellow, but on cooling

reassumes its white colour; ZnO. The substance is white; on being heated it turns dark yellow, and on again cooling assumes a pale yellow eolour; SnO₂. White or light yellow, when heated dark yellow; on cooling, light yellow; Bi₂O₃ (fusible). White or yellow, changing to dark red when heated, and when cold again yellow; PbO (fusible).

6. The substance carbonises; presence of organic com-

pounds.

7. The substance remains unaltered; BaCO₃, BaSO₄, etc.

II. Heat the Substance before the Blowpipe on Charcoal.

1. Deflagration; chlorates, nitrates.

2. The substance fuses, penetrates into the pores of the charcoal, or forms a transparent glass; salts of K, Na, Li, or (NH₄). The residue has an alkaline reaction; carbonates, nitrates.

3. The substance is infusible; compounds of the alkaline

earths, SiO₂, ZnO, etc.

4. The substance becomes incandescent; ZnO, MgO, CaO, SrO. If a smell be observed, during the last two experiments, As_2O_3 (reeognisable by its odour of garlie), SO_2 or

NH, may be present.

5. Moisten the infusible residue, when cold, with solution of cobaltic nitrate, and ignite again. Al₂O₃; dark blue colour. MgO; pale flesh colour. BaO, SrO, and CaO; grey colour. ZnO; yellowish-green. SnO₂; bluishgreen. Sb₂O₃; dirty, dark-green colour.

III. Heat the Substance mixed with Na₂ CO₃ before the Blowpipe on Charcoal.

1. If a *sulphide* is formed (recognisable by its action on a silver eoin, see p. 10), the presence of S may be inferred

2. Gray metallic powder, without incrustation; Fe, Ni

or Co (magnetic).

3. Metallic bead, without incrustation; red, Cu; the flame has at the same time a greenish colour. White, Ag; sometimes accompanied by a slight red incrustation, Sn; it is more easily reduced if borax, or, better, if KCN be mixed with the Na₂CO₃. If heated for a length of time, the metallic beads are changed into yellow SnO₂, which is not volatile, and on cooling changes to a white colour. Yellow: Au.

4. Metallic bead, with incrustation; I. The metallic bead is ductile, the incrustation yellow; Pb. When the deposit is heated in the reducing flame, it volatilises, colouring the flame blue. II. The metallic bead is brittle. A white volatile incrustation shows the probable presence of Sb (vide XXVIII. 2). A yellow incrustation, darkening in colour when heated, is produced by Bi. It is lighter in colour than that of Pb, and volatile when exposed to the reducing flame, to which it does not impart a colour.

5. Incrustation without metallic bead; white, very volatile, with a smell of garlic. As; white, yellow while hot. Zn; reddish-brown. Cd; most easily observed after

cooling.

IV. Colouration of the Flame.

Heat a portion of the substance, moistened with HCl, on a piece of platinum wire, in the outer flame of a bunsen burner, or in the oxidising flame of the blowpipe.

Yellow; Na (I. 2).

Red; Sr, Li, Ca (yellowish-red).

Green; Ba (yellowish-green), (Tl), Cu.

Blue; Ca Cl₂.

Violet; K (IV. 3).

V. Colour of a Bead of Borax, or Microcosmic Salt $(PO_4HNaNH_4 + 4H_2O; when fused, PO_2ONa)$.

	OXIDISING FLAME.			REDUCING FLAME.		
		Hot.	Cold.		Hot.	Cold.
Green.	Bright green	Cr Ur Cu	Cr Ur	In sufficient quantity	Cr Ur Fe	Cr Ur
Blue.		Со	Co Cu		Со	Со
Yellow.	When much is present, opal coloured	Ag Bi Ur Pb Cd	Ag			
	If present in (sufficient quantity	Ti	Fe Ni		Ti Ni	Ni
Red.	Brownish-red	Fe Ni		Brownish-red,		Cu
Violet.				After addition of tin-foil		Ti
Gray (reduced metal).				After addi- (Ag Pb	
				tion of tin-	Ni	Bi Ni
Insoluble.		SiO,	SiO ₂		SiO	SiO ₂

VI. Solution of the Substance.

1. The substance is solid, but not a metal.—Try if it is soluble in water. If the substance is completely, or in great part soluble, treat a larger quantity, 1 to 3 grammes, in a similar manner, and investigate the aqueous solution. If, on the contrary, the substance is insoluble, or soluble with difficulty, evaporate a portion of the filtered fluid on platinum-foil, and notice if a residue is left on evaporation, and if it is stable, volatile, or non-volatile. If the residue is extremely small, the substance may be considered to be insoluble in water, and should be tested in a similar manner as to its solubility in dilute HCl. Notice if during the action of HCl, CO₂, H₂S, or HCN, is evolved.

If the substance does not dissolve in dilute HCl, even on boiling, it must be treated with concentrated hydrochloric acid. (Evolution of Cl betokens the presence of higher oxides or chromates). The insoluble in HCl must be treated with HNO₃ in the same manner. Should there still remain an insoluble residue, an attempt must be made to dissolve it in a mixture of three volumes of

HCl, and one of HNO₃ ("aqua regia.")

For substances insoluble in acids, vide sec. 51, p. 54.

2. The substance is a fluid.—Test the fluid with litmuspaper. Evaporate a portion to dryness, and proceed to

test it as described in I., II., III., IV., and V.

3. The substance is a metal.—It is treated with HNO₃; Au and Pt remain unaltered, and may be dissolved in aqua regia. Sb and Sn (sometimes containing As) remain as white oxides, insoluble both in water and in HNO₃. It is filtered off, and, after being thoroughly washed, is treated with HCl (sec. 49), or with Na₂S (sec. 50).

4. Endeavour to obtain as strong solutions as possible. A large excess of acid, especially of HNO₃, is to be avoided, but may be usually removed by evaporation. Sometimes, however, evaporation may lead to loss, as in the instance of arsenic, existing as AsCl₃, which volatilises

on evaporation.

5. It is advisable to investigate the aqueous and the acid solutions separately; as in the former, alkalies, nitrates, chlorates, and many sulphates are present, but no baric, strontic, or calcic phosphates, which latter are soluble in acids. Alkalies are seldom met with in the acid solution. The solutions in HCl and HNO₃, may be mixed, and the precipitate, if one is formed, collected, and investigated by itself.

B.—DETECTION OF BASES.

The solution of the substance, if aqueous, is acidified with HCl; if acid, it is diluted with H₂O; should a precipitate occur, no notice is taken of it. H₂S is added to the fluid; the resulting precipitate contains all metals of groups V. and VI.

To the filtrate is added an excess of NH₃, and a quantity of (NH₄)₂S, sufficient to precipitate groups III. and IV.

A portion of the filtrate is tested for Ba, Sr, Ca, and Mg, by means of NH₃, and Na₂HPO₄ (group II.)

General Behaviour of the Metals with Reagents.

H ₂ S Gives a precipitate in acid solution. The precipitate is treated with (NH ₄)2S.		(NH ₄) ₂ S Precipitates in ammoniacal solution as		Na ₂ HPO ₄ Precipitates	No Precipitate with the former reagents,
As Sb Sn	Hg Ag Pb Bi Cu Cd	Hydrate Sulphide Al Ni Cr Co Fe Mn Zn Phosphates and oxalates of Ba, Sr, Ca, and Mg (Ur)		Ba Sr Ca Mg	K Na (NH ₄) Li
VI.	V.	IV.	III.	II.	I.

GROUP I.—ALKALIES, K, Na, (NH4), (Li).

1. The fluid, in which H₂S and (NH₄)₂S failed to produce a precipitate, or from which the metals belonging to groups III.-VI. are already removed, and provided Ba, Sr, Ca, and Mg are absent, is evaporated to dryness, and ignited to volatilise the salts of animonium. Residue: K, Na, Li.

2. Heat a portion of the dry residue on the loop of a platinum wire in the outer flame of a bunsen burner, or

on the blowpipe flame.

Yellow colouration of the flame; Na. Apply the tests

given in I. 2 (p. 3).

Violet; K. In presence of Na, the violet colour is apparent only when viewed through an indigo prism

(vide IV. 3, p. 5).

Red; Li. The colouration which Li gives to the flame is also observed in presence of much Na. It may be identified most easily by means of the spectroscope. The separation of Li from K and Na may be most easily accomplished, by the solubility of LiCl in a mixture of absolute alcohol and ether, in which KCl and NaCl do not dissolve. A concentrated aqueous solution of a lithium salt gives, when treated with (NH₄)₂CO₃, a white precipitate of Li₂CO₂.

3. Detection of NH₃.—A portion of the original substance is treated with NaOH, and heated slightly. The NH₃ may be recognised by its smell, by its alkaline reaction on moistened test paper, and by its giving white fumes when a rod, moistened with acetic acid or HCl, is

held near it.

GROUP II. Ba, Sr, Ca, Mg.

4. If, in a small portion of the fluid in which $(NH_4)_2S$ has failed to give a precipitate, or which has been filtered off from it, and which has been treated as directed in

sec. 10, p. 41, a precipitate is formed on addition of NH₃ and Na₂HPO₄, another portion of the same fluid is treated with solution of calcic sulphate.

Immediate turbidity: Ba (compare sec. 10).

5. Add a solution of one part of $(NH_4)_2SO_4$ dissolved in four parts water to the remainder of the fluid, in which the metals of groups I. and II. may be present. If a precipitate is formed, add excess of $(NH_4)_2SO_4$, and boil for a short time. The precipitate consists of BaSO₄ and SrSO₄ (sec. 6); in the filtrate Ca, Mg, and the alkalies

(see. 7) are present (comp. sec. 10).

6. The precipitate of BaSO₄ and SrSO₄ is filtered off, and, after being thoroughly washed, boiled with a mixture of K₂CO₃, and K₂SO₄ (vide XXXV. 5, and XXXVI. 5, p. 31). It is then filtered, the precipitate carefully washed, and treated on the filter with HCl. SrCO₃ dissolves with effervescence, and its presence may be confirmed with solution of CaSO₄, or by the flame eolouration (vide XXXV. 4, 5, p. 31).

7. The filtrate from $BaSO_4$, and $SrSO_4$, or the fluid in which $(NH_4)_2SO_4$ produced no precipitate, is treated with $(NH_4)_2C_2O_4$. Precipitate: Ca. A part of the filtrate from the CaC_2O_4 , or of the fluid in which $(NH_4)_2C_2O_4$ failed to produce a precipitate, is treated with NH_3 , and Na_2HPO_4 . Precipitate: Mg. If Mg is not present, proceed with the remainder of the fluid,

as directed in sec. 1.

8. Magnesia is Present.—The solution from which Ba, Sr, and Ca have been removed, and of which a small portion has been taken in order to test for Mg, is evaporated to dryness, and ignited to drive off the salts of ammonium. The residue is dissolved in water; lime-water or baryta-water, which contains no alkaline impurity, is added till the liquid has an alkaline reaction; it is then boiled and filtered off from the mixture of MgO, and excess of CaO. The precipitate is washed, the filtrate added to the washings, and concentrated by evaporation; the CaO, which still remains in solution, is removed by

NH₃ and (NH₄)₂CO₃ (or [NH₄]₂C₂O₄), or the BaO precipitated with H₂SO₄. The filtrate from this precipitate is evaporated to dryness.

Detection of NH₃: vide sec. 3. Residue: Na, K (vide

sec. 2).

GROUPS III. and IV.; Al, Cr, Ni, Co, Fe, Mn, Zn, (Ur).

9. To a portion of the solution, in which H_2S failed to produce a precipitate, or from which the V. and VI. groups precipitated by that reagent have been removed by filtration, NH_3 is added till an alkaline reaction is produced; then $(NH_4)_2S$. If a precipitate is formed, the remainder of the solution is treated in the same way. Warm gently, filter off the precipitate, and wash it with water containing $(NH_4)_2S$, in order to prevent the sulphides oxidising. If Ni be present, the filtrate is usually dark brown and turbid from dissolved NiS.

10. Unite the filtrate with the washings, test for the presence of Ba, Sr, Ca, and Mg, and treat it further, as directed in sec. 5 or sec. 1, as the ease may be. Since an excess of $(NH_4)_2S$ may be prejudicial to the reactions for detecting Ba or Sr, the filtrate from the precipitate obtained by $(NH_4)_2S$ ought to be evaporated to half its original bulk, acidified with a little HCl, and boiled in order to destroy any $(NH_4)_2S_2O_3$ which may possibly have been formed, and the solution filtered. To a portion of the filtrate a solution of $CaSO_4$ is added for the detection of Ba and Sr. (Turbidity after some time, sec. 4). The rest of the filtrate is rendered alkaline with NH_3 , $(NH_4)_2SO_4$ added, and treated as described in sec. 5 for the separation of Ba and Sr.

11. The precipitate of groups III. and IV. is well washed, removed from the filter by help of a spatula, and placed in a flask. Dilute HCl is then added, and a gentle heat applied. If a black insoluble residue remains, Co and Ni (sec. 12) are present. If the insoluble

be white, and in small quantity, it is sulphur. It is filtered off, and investigated as described in sec. 13.

12. Separation of Co and Ni.—Part of the precipitate, which must have been well washed, is heated in a bead of borax or microcosmic salt before the blowpipe (XX. 3, p. 21). The rest of the black sulphides is dissolved in concentrated HNO₃; the solution concentrated by evaporation, and neutralised with Na₂CO₃. An excess of KNO₂ is added, the fluid acidified with a few drops of HC₂H₃O₂, and allowed to stand for twenty-four hours. The yellow precipitate of Co (XX. 4, p. 21) is filtered off; the filtrate treated again with KNO₂ to ensure the removal of all Co, and the Ni finally precipitated with NaOH as Ni (OH)₂ (p. 20).

Nickel may be detected in presence of cobalt by dissolving the mixed sulphides in concentrated HNO₃, and neutralising with Na₂CO₃; KCN is then added till the resulting precipitate has dissolved, and NaClO till the fluid smells strongly of it, even after being shaken. It

is then boiled. Black precipitate; Ni₂O₃.

13. The solution of the remainder of the metals of groups III. and IV. in HCl, is boiled till all traces of H₂S are removed; and if iron be present (its presence is betrayed by the black colour of the precipitate by [NH₄]₂S), it must be oxidised by being boiled with HNO₃, or HClO₃. The further process depends on the presence or absence of Cr. If Cr be present, the hydrochloric acid solution (sec. 11) has a violet or green colour. Chromium will also have been detected in the preliminary examination, from the colour of the borax bead.

Chromium is Absent.

14. The precipitate with $(NH_4)_2S$ had a light colour: Al, Mn, Zn; Fe is absent. To the solution in HCl (sec. 13) NaOH is added in excess. Precipitate Mn. Examine the precipitate before the blowpipe, as directed in XVII. 9, p. 19. The filtrate from Mn(OH)₂ is divided into two

portions. The one is acidified with HCl, and excess of $\mathrm{NH_3}$ added. Precipitate: Al. $\mathrm{H_2S}$ is added to the other portion. Precipitate Zn.

15. The precipitate with (NII4), S was dark-coloured.

Iron is present.

Proceed as directed in sec. 25, or add to the solution in HCl (sec. 13) Na₂CO₃ till a permanent precipitate is produced; dissolve it in a small quantity of HC₂H₃O₂. Some NaC₂H₃O₂ is then added, and it is boiled till the supernatant fluid is colourless. If it has a brown, or yellow colour, either NaC₂H₃O₂ has not been added in sufficient quantity, or it has not been long enough boiled.

16. Precipitate; Al, Fe (sec. 16); Filtrate Mn, Zn (sec. 17). The precipitate of Al and Fe, after being washed, is dissolved in HCl; an excess of NaOH is then added,

and the fluid boiled.

Precipitate; Fe. Confirm by the tests given in XVI. 9, 10, p. 18. The filtrate from the precipitate of Fe(OH)₃ is acidified with HCl, and the Al(OH)₃ precipitated by adding excess of NH₃.

17. The filtrate, which contains Mn and Zn, is treated

with H₂S. Precipitate, Zn.

The filtrate from ZnS, which must contain an excess of H₂S, is rendered alkaline by NH₃, and some (NH₄)₂S added. *Flesh-coloured precipitate*; Mn.

Chromium is Present.

The original solution has a green or violet colour, provided a chromic salt is present, and yellow or red if a

chromate be present.

18. The solution in HCl (sec. 13), which has been heated with KClO₃, or with HNO₃, must be carefully neutralised with Na₂CO₃, care being taken that no permanent precipitate be formed; when the fluid is thoroughly cold, add some BaCO₃, kept in suspension by water, without heating. Shake the fluid, let it stand for some time in the cold, and filter as soon as the supernatant fluid be-

eomes colourless. The precipitate may contain Al, Fe, Cr

(sec. 19); the filtrate Mn, Zn (sec. 23).

19. The precipitate, after being well washed, is dissolved in HCl, and the excess of BaCO₃ neutralised with H₂SO₄. The liquid is boiled, and filtered; NH₃ is added to the filtrate: Precipitate: Fe₂O₃, Cr₂O₃, Al₂O₃. This precipitate is filtered off, washed, removed from the filter, and dissolved in a small quantity of HNO₃ in a basin. Some solid KClO₃ is added to the solution, which is boiled for a few minutes, more being added, if necessary, till it assumes a yellowish-red colour. Excess of NaOH is now added, and the fluid is heated. Precipitate: Fe (see. 20). Filtrate: Cr, Al (sec. 21, 22).

20. Fe. The precipitate of Fe₂O₃* is filtered off and

tested, as in see. 16.

21. Al. The alkaline filtrate from Fe₂O₃ is acidified with HNO₃, and precipitated with NH₃; Al₂O₃. To confirm aluminum, ignite the precipitate of Al₂O₃ moistened with a few drops of Co(NO₃)₂ on charcoal, before the blowpipe, as directed in II. 5, p. 34.

22. Cr. The filtrate, on removal of the precipitate of Al_2O_3 , is yellow, owing to the presence of CrO_3 . It is acidified with $HC_2H_3O_2$, and precipitated with

 $Pb(C_2H_3O_2)_2$, as yellow $PbCrO_4$.

23. Mn and Zn. The filtrate from the precipitate formed by BaCO₃ (sec. 18) is freed from the dissolved baryta by adding H₂SO₄, and Mn and Zn precipitated by adding NaOH to the boiling solution. A portion of the precipitate is tested for Mn by means of KNO₃ and Na₂CO₃

* In all the above-given methods of separation uranium remains always with the iron, and is always precipitated as Ur₂O₃ when the Fe is precipitated as Fe₂O₃. In order to separate Ur from Fe, the mixture of both is dissolved in HCl, exactly neutralised with NH₃, and the Fe precipitated by a mixture of (NH₄)₂S, and (NH₄)₂CO₃, as FeS. The filtrate is acidified with HCl, boiled, and oxidised with HNO₃. The Ur₂O₃ is precipitated on addition of NH₃.

Confirm it by the blowpipe reactions, p. 36, or by solution in HCl, and addition of 4KCN, FeCN; reddish-brown precipitate.

(XVII. 9, p. 19). The remainder of the precipitate is dissolved in $HC_2H_3O_2$, and H_2S passed through the solution. Precipitate: ZnS. The filtrate is tested for

Mn, as in sec. 17.

24. FeO, and Fe₂O₃. As Fe is always precipitated as Fe₂O₃, in following the usual course of qualitative analysis, it is necessary, in testing for FeO, to use a portion of the original substance. Some 3KCN.FeCN₃ is added to the acid solution of the original substance. If FeO be present, a blue precipitate will be thrown down—3FeCN₂.2FeCN₃ (Turnbull's blue). Fe₂O₃ is identified as in XVI. 9, 10.—These reactions are, of course, only practicable when substances, such as ferro, or ferrid-cyanides, or sulphocyanides, which would interfere with the reaction, are absent. In presence of HNO₃, or of HCl when the higher metallic oxides are present, or of CrO₃, etc., FeO is oxidised into Fe₂O₃.

25. If it is wished to separate the metals of groups III. and IV., in absence of Cr. (sec. 18), proceed with the filtrate as directed in sec. 23 for the separation of Mn and Zn. The precipitate of Fe₂O₃, Al₂O₃, and excess of BaCO₃ is dissolved in HCl, as in sec. 19, the excess of BaCl₂, removed by adding H₂SO₄, and excess of NaOH added to the filtrate. The presence of Fe and Al are

confirmed as given in sec. 20, 21.

Baric, Strontic, Calcic, or Magnesic Oxalates or Phosphates are present.

26. $H_2C_2O_4$. Part of the precipitate produced by $(NH_4)_2S$ is boiled for some time with an excess of Na_2CO_3 , and is filtered while boiling, acidified with $HC_2H_3O_2$, and

CaCl₂ added. Precipitate: CaC₂O₄.

27. If $H_2C_2O_4$ be present, dry the remainder of the precipitate produced by $(NH_2)_2S$, and ignite it in a covered porcelain crucible till the oxalic acid is destroyed. The residue is dissolved in HCl, an excess of NH_3 added and reprecipitated with $(NH_4)_2S$. The bases which were

formerly united to H₂C₂O₄ remain in solution; they can be tested for in the filtrate, as in sec. 4. If $H_2C_2O_4$ be absent, proceed with the rest of the $(NH_4)_2S$ precipitate as directed in sec. 28.

28. The precipitate produced by $(NH_4)_2S$, now freed from oxalic acid, is digested with HCl (sec. 11). A black residue points to the presence of Ni and Co (sec. 12); the solution is treated with HNO₃ or HClO₃ in order to oxidise the Fc which may be present; in a small portion Fc, and H_3PO_4 are tested for as in sec. 29, 30.

29. Fe may be tested for with KCNS, or 4KCN.FeCl₂.

30. H₃PO₄. Some of the solution in HCl of the precipitate produced by (NH₄)₂S, is boiled to get rid of excess of H₂S; it is then added, drop by drop, to a solution of ammonic molybdate, previously acidified with HNO₃. Yellow precipitate, H₃PO₄ (sec. 59).

31. The remainder of the acid solution of the (NH₄)₂S precipitate is carefully neutralised with Na₂CO₃ (if excess be added, the precipitate must be redissolved in a small quantity of $HC_2H_3O_2$) and $NaC_2H_3O_2$ added. If the fluid does not become red, $FeCl_3$ must be added. It is boiled till the supernatant fluid is perfectly colourless; filtered while boiling, and well washed. The precipitate may consist of Fe, Al, Cr, H₃PO₄, (sec. 32). The filtrate contains Mn, Zn, and Ba, Šr, Ča, or Mg, formerly existing as phosphates* (sec. 34).

32. Al₂O₃. The precipitate of Al, Cr, Fe, H₃PO₄, after being filtered and washed, is boiled with excess of NaOH, and Al₂O₃ tested for in the filtrate by addition of HCl,

and NH₃, as in sec. 16.

^{*} If the substance contains Al₂O₃, and a phosphate, AlPO₄ may have been formed, in precipitating with (NH₄)₂S, which would not be acted on by FeCl₃, as in sec. 31. On treating the precipitate with NaOH (sec. 32) Al(OH)₃ would not be dissolved, but AlPO4, which would be again precipitated, on addition of HCl and NH₃. In order to test for H₃PO₄, the precipitate produced in the NaOH solution by NH₃ and HCl, must be dissolved in H₂C₄H₄O₆, an excess of NH₃, NH₄Cl, and MgSO₄ added. Precipitate, Mg(NH4)PO4.

33. H₃PO₄ and Cr. The insoluble in NaOH (sec. 31) is dissolved in HCl, neutralised with NH₃, excess of (NH₄)₂S added, and filtered. To precipitate H₃PO₄, NH₄Cl, NH₃, and MgSO₄ are added to the filtrate.—To prove the presence of Cr in the black precipitate of FeS, the latter, after being dried, is fused with a mixture of Na₂CO₃, and KNO₃ or KClO₃, in a porcelain crucible. The melted mass is dissolved in water, filtered, and the chromic acid precipitated in the filtrate by addition of Pb(C₂H₃O₂)₂, as PbCrO₄.—Or proceed as directed in sec. 19.

34. Mn, Zn, Ba, Sr, Ca, Mg. The filtrate from the precipitate with FeCl₃ and HC₂H₃O₂ is treated with NH₃, NH₄Cl, and (NH₄)₂S. Precipitate: ZnS and MnS. This precipitate is dissolved in HCl, and investigated as in sec. 14. In the filtrate from ZnS, and MnS, the presence of Ba, Sr, Ca, and Mg is proved as

in sec. 4.

35. Additional Remarks.—Cr and H₃PO₄. In separating phosphoric acid from Ba, Sr, Ca, and Mg, as in sec. 31, the chromium is sometimes not thoroughly precipitated, and a coloured filtrate is obtained. The separation by means of BaCO₃ is more exact, but of course the presence of Ba must be tested for. After it has been ascertained, as in sec. 29, 30, that Fe and H₃PO₄ are present in the HCl solution of the (NH₄)₂S precipitate, (NH₄),SO₄ is added to another portion of the solution. The precipitate of BaSO₄ and SrSO₄ is investigated as in sec. 6. (Or Ba and Sr may be tested for with lime-water.) To the remainder of the solution add FeCl, in case iron be not present in sufficient quantity, till a drop of the solution gives a yellow precipitate when NH, is added. The liquid is now evaporated nearly to dryness, the residue dissolved in H₂O, the excess of acid nearly neutralised with Na₂CO₃, and BaCO₃ added; the mixture is shaken, and allowed to stand in the cold. The precipitate is dissolved in HCl, the Ba removed by H₂SO₄ and NH₃ added. Precipitate,

Al₂O₃, Cr₂O₃, Fe₂O₃, and H₃PO₄. The filtrate from the precipitate with BaCO₃ is treated with H₂SO₄, to precipitate the barium in solution, and proceeded with as in sec. 34.

GROUPS V. and VI.

36. The solution of the substance if aqueous is acidified with HCl; if acid, diluted with water, and without paying regard to the precipitate* which may have been formed, a solution of H₂S is added. If a precipitate falls, the fluid must be gently warmed, and H₂S passed through till it smells of it even after being shaken, and a portion filtered does not give a precipitate.

If the solution of substance contains too much free HNO₃, only a flocky yellow precipitate of sulphur is formed on treating with H₂S; nitrous fumes are also evolved. The acid must be expelled by evaporation, and

the solution sufficiently diluted.

All the sulphides of metals belonging to groups V. and VI. are coloured.—If a white precipitate fall or only a milky turbidity of S, it may be concluded that groups V. and VI. are absent; also that no Cr_2O_3 , or Fe_2O_3 is present. If the chromium be contained in the solution, the reddish-yellow colour is changed to violet or green. Take no further notice of the precipitate of S, but saturate the fluid, without submitting it to filtration, with

* On adding water to an acid solution, basic bismuth and antimony salts are thrown down.—HCl precipitates AgCl, PbCl₂, and Hg₂Cl₂.—HCl added to an alkaline solution may precipitate AgCl, PbCl₂, As₂S₃, SnS₂ (e.g., PbO dissolved in NaOH; ammoniacal solution of AgCl, As₂S₃, etc.); and if to the aqueous solution of Na₃SbS₄ (Sodic-sulphantimoniate) Sb₂S₃ is thrown down, with simultaneous evolution of H₂S. Added to solutions of the double cyanides, HCl precipitates insoluble cyanides, with evolution of HCN. These precipitates might be filtered off, and investigated alone; but as they are changed into sulphides, that treatment with H₂S is unnecessary. HCl produces a precipitate of silica when added to alkaline silicates. For analysis of silicates, see sec. 82.—Cyanides are to be treated as given in sec. 87.

NH₃, and test for metals of groups III. and IV. with

 $(NH_4)_2S.$

37. The precipitate of the sulphides is filtered off, washed, and a small portion gently warmed in a test-tube, with (NH₄)₂S. If a residue remain (group V.), it is filtered off, and excess of HCl added to the filtrate. If a coloured precipitate be produced, metals belonging to group VI. are present (see. 43), and the whole precipitate must be treated in the same manner. If, however, the precipitate be pure white (S), metals of the sixth group are not present, and the remainder of the H₂S precipitate may be treated at once with HNO₃ as given in sec. 38.

Group V.-Hg, Ag, Pb, Bi, Cu, Cd.

38. The portion of the precipitate, formed by H₂S, which remained insoluble, after being digested with (NH₄)₂S, is washed with (NH₄)₂S water, and boiled with dilute HNO₃. Residue: HgS (sec. 39); filtrate

(sec. 40).

39. Hg. If the residue is heavy and black, it probably consists of HgS; if white or yellow, it is merely sulphur, produced by the oxidation of the sulphides. If the precipitate by H₂S has not been treated with a sufficient quantity of (NH₄)₂S, if Hg₂O was present, Hg₂S remains behind, which is only partially soluble in HNO₃, and is partly changed into white or grey Hg (NO₃)₂. 2HgS. In order to test for Hg in this residue, it is ignited with dry sodic carbonate (XXV. 11). A similar precipitate may be formed, in presence of HgO, if not enough of H₂S has been added in precipitation, and too small a quantity used of (NH₄)₂S in washing.

To confirm the presence of Hg in the black residue,

it is dried and heated with NaCO₃ in a small tube. It may also be confirmed by boiling with HNO₃ till only a small residue of S remains. The acid solution is then neutralised with NaOH, and a solution of KI

added. Red precipitate: $\mathrm{HgI_2}$.—Or the HgS may be oxidised with a mixture of HCl and a small quantity of $\mathrm{KClO_3}$; the excess of acid removed by evaporation, and a few drops of $\mathrm{SnCl_2}$ added. Precipitate of $\mathrm{Hg_2Cl_2}$.

Additional Remark.— $\mathrm{Hg_2O}$ and HgO . If the original

Additional Remark.—Hg₂O and HgO. If the original substance gives, on addition of HCl, a white precipitate (Hg₂Cl₂) turning black on being treated with NaOH, a mercurous salt is present. If a mercuric salt be also present, it may be recognised in the filtrate from Hg₂Cl₂, by forming a further precipitate of Hg₂Cl₂, on addition of SnCl₂. It must be noticed that, by dissolving in HNO₃, or in presence of reducing agents, mercurous

(Hg₂O) are changed to mcreuric salts (HgO).

40. Pb and Ag. The nitric acid solution of the remaining metals is treated with dilute H_2SO_4 .—Precipitate, $PbSO_4$. This precipitate gives a metallic bead on charcoal before the blowpipe; it is soluble in ammonie tartrate, from which it may be again precipitated by $K_2Cr_2O_7$.—Add some HCl to the filtrate from the $PbSO_4$. Precipitate, AgCl. The precipitate must be easily soluble in NH_3 ; and, on addition of HNO_3 , must be again thrown down.

41. To the filtrate from AgCl, excess of NH₃ is added. Precipitate: Bi. Dissolve the precipitate, after washing it well in a small quantity of strong HCl, and add some

water. Precipitate: BiOCl.

42. Cu and Cd. If the filtrate from the $Bi(OH)_3$ has a blue colour, Cu is present. To detect Cd, H_2S is passed through the fluid, and the precipitate, after being well washed, is boiled in weak H_2SO_4 (one part H_2SO_4 to five parts H_2O), with addition of a small quantity of H_2S water. Residue: CuS; solution Cd. Test for Cd in the filtrate with H_2S . Another method.—Add KCN to the ammoniacal solution of Cu and Cd, till it becomes colourless; and add H_2S . Yellow precipitate, CdS (CuS is soluble in KCN). Confirm the Cd before the blowpipe (XXIV. 1). If Cu be absent, Cd is tested for at once with $(NH_4)_2S$.

Group VI.—As, Sb, Sn.

43. HCl is added to the solution of the metals of group VI. in $(NH_4)_2S$ till it has an acid reaction. If they are absent, a white milky turbidity, produced by the decomposition of yellow $(NH_4)_2S$, will be formed; but if present, a coloured precipitate is thrown down; the solution, in the latter ease, is slightly warmed, filtered, and well washed. The mixture of the sulphides is heated gently with concentrated HCl. Yellow residue: As (sec. 44). Filtrate: Sn and Sb (sec. 47).

44. As. The yellow $As_2S_5^*$ is dissolved in HCl, some KClO₃ being added; excess of NH₃ is added to the solution, and then NH₄Cl, and MgSO₄. Precipitate: MgNH₄AsO₄. In order to confirm this, filter off a part of the precipitate, and treat it, after having washed it, with a solution of AgNO₃. It assumes a reddishbrown colour: Ag₃AsO₄. The remainder of the precipi-

tate is ignited with KCN, and Na₂CO₃ (sec. 45).

45. The presence of As† may also be confirmed, by heating the dry As₂S₅ mixed with about six times its weight of equal parts of dry Na₂CO₃ and KCN, in a glass tube. It is warmed gently at first to expel any moisture which may be present, which is removed from the sides of the tube, where it has condensed, by filter paper, and then heated more strongly. Black metallic deposit: As. If the tube be cut off, and heated, while held in an inclined position, the smell of garlic may be distinctly observed. MgNH₄AsO₄ may be reduced in the same manner.

* As is always precipitated by H₂S from acid solutions, as As₂S₃ (XXIV. 10). But when treated with *yellow* (NH₄)₂S, it

is converted into As₂S₅.

† When As₂S₅ is treated with KCN and Na₂CO₃, the whole of the As is not liberated in the metallic state; for a potassic arsenic sulphide is formed, on which the excess of KCN is without action. If, as is usually the ease, free S be present, still less As is reduced. The arsenic sulphide should, in this case, be dissolved by treating with NH₃; the S remains insoluble. The ammoniacal solution is evaporated to dryness, and the residue ignited with KCN and Na₂CO₃.

46. Additional Remark.—As₂0₃ and As₂0₅. Only the alkali-salts of these acids are soluble in water; all other salts dissolve only in acids. As₂O₃ may be distinguished from As₂O₅ by its behaviour when treated with H₂S (XXIX. 7, 10); only As₂O₅ gives a precipitate with NH₄Cl, NH₃, and MgSO₄; the reaction when treated with AgNO₃ is also different (XXIX. 9, 11). Both argentic arsenite and arseniate are soluble in NH3, but only the solution of argentic arsenite deposits metallic silver when boiled.—A solution of As2O3 in excess of NaOH, when treated with CuSO₄, gives a blue solution, from which a red precipitate of Cu₂O is thrown down on boiling. $(As_2O_3 + 6NaOH + 4CuO = 2Cu_2O + 2Na_3AsO_4 + 3H_2O)$. It differs on this account from

As₂O₅.

47. Sn and Sb.—The acid solution is diluted (if much free acid be present, it must be nearly neutralised with NaOH), and a piece of metallic zinc added. If a small portion of the fluid be reduced with Zn on a platinum lid, the latter becomes covered with a black stain of metallic Sb. (XXVIII. 9). If the reduction is complete, the excess of Zn is removed, the solution of ZnCl₂ poured off, the deposit washed by decantation, and finally treated with HCl. Residue: Sb; Solution—Sn. The presence of Sn in the solution is confirmed with HgCl₂ (XXV. 10), or with H₂S (brown precipitate, SnS, XXVII. 7); if the former of these tests be employed, some H₂SO₄ must first be added, to remove any Pb which may have been present in the Zn. The residue of Sb is dissolved in HNO3, HCl added to the solution, and the fluid diluted; SbOCl is precipitated, which is soluble in H₂C₄H₄O₆, and precipitable from the solution by H2S; the residue may also be confirmed by passing H₂S through the nitric acid solution; but the presence of Pb renders the action indistinct.

48. Oxides of Sn and Sb.—A solution of a stannous salt may be recognised by its behaviour, when treated with HgCl2; SnO2 may be precipitated from a weak

acid solution, when poured into a saturated solution of Na, SO₄ (SnO₂). A solution of Sb₂O₅, when boiled with KI and HCl, liberates free iodine. (Sb₂O₅ + 4KI + 10HCl = 4I + 4KCl + 2SbCl₃ + 5H₂O). AgNO₃, added to a solution of Sb₂O₃ in NaOH gives a black precipitate of a mixture of Ag₄O and Ag₂O. If NH₃ be added, Ag,O dissolves, and a deep black residue of Ag_4O remains. $(Sb_3O_3 + SAgNO_3 + SNaOH = 2Ag_4O +$ $Sb_{3}O_{5} + 8NaNO_{3} + 4H_{2}O$).

Second Process for Separating As, Sb, Sn.

49. The mixture of sulphides VI. (sec. 43) is heated with concentrated HCl, to which some KClO, has been added; at first gently, then more strongly, till nothing but S remains undissolved. The solution is filtered, excess of pretty concentrated NaOH is added, and then a quantity of alcohol, equal in volume to a fifth of the solution. Precipitate: NaSbO₃. Confirm before the blowpipe with Na,CO3; or by dissolving in HCl, and depositing the Sb on platinum with Zn. The filtrate is evaporated till the alcohol is removed; it is then acidified with H₂C₄H₄O₆, to prevent the precipitation of SnO₆, and excess of NH₃ added. The As is now precipitated as MgNH₄AsO₄ by addition of NH₄Cl, NH₃, and MgSO₄. (Confirm as in sec. 44). The filtrate from the ammoniomagnesic-arseniate is acidified with IICl, and HoS added. Precipitate: Sn. Confirm by igniting the precipitate in the oxidising flame, and afterwards reducing the resulting SnO, with Na, CO, on charcoal before the blowpipe.

Third Method of Separation of As, Sb, and Sn.

50. The sulphides VI. (sec. 43) are dissolved in Na₂S (prepared by adding an excess of H2S to a solution of NaOH, and then adding an equal volume of the same solution of NaOH), an excess of SO, added, and the solution heated gently at first, and then boiled till all excess

of SO_2 is expelled. Precipitate: Sn and Sb; solution: As. — $(As_2S_3 + 3Na_2S + 5S_2 = 2NaAsO_2 + 2Na_2S_2O_3 + S_7)$. The residue of the sulphides of Sn and Sb is dissolved in HCl, and Sn separated from Sb, as in sec. 47, or sec. 49. In the filtrate, As is precipitated as As_2S_3 on addition of H_2S .

Analysis of Compounds Insoluble in Water and Acids.

51. To this class belong, 1st, BaSO₄, SrSO₄, CaSO₄, PbSO₄;—2nd, AgCl, AgBr, AgI, PbCl₂;—3rd, Oxides which have been ignited, such as Cr₂O₃, Fc₂O₃, Al₂O₃, SnO₂, etc.;—4th, CaFl₂;—5th, C, S;—6th, Silicates.

52. If the substance be insoluble and black, it should be ignited on platinum foil in the oxidising flame of the blowpipe. If C be present it is oxidised, and the residue becomes white. At the same time S, if it be present, may be discovered by the odour of SO₂; it may also be recognised by its subliming in brown drops when heated in a glass tube (I. 2).

53. A portion of the substance, after C and S have been removed, is treated with $(NH_4)_2S$. If it becomes black, Pb or Ag are present, and may be confirmed by the blowpipe tests. SnO_2 , Cr_2O_3 , SO_3 , SiO_2 may also be discovered by the blowpipe— $CaFl_2$, vide sec. 64, p. 59.

Analysis of silicates, vide sec. 82, p. 63.

54. If Pb and Ag be absent, the insoluble substance is fused with four times its weight of Na₂CO₃ in a platinum crucible, with the foot-blowpipe, till the mass becomes fluid. On treating with water, the acids dissolve and the bases remain behind (BaO, SrO, etc.); they are carefully washed out with water, dissolved in HCl, and separated as usual. If chromium be present, as soon as the mixture is fluid, KClO₃ is added in small portions at a time, or the mixture may be fused with equal parts of Na₂CO₃, and KNO₃ in a porcelain crucible, for ten minutes, taking care not to use too great heat. In the aqueous solution

of the fused mass, the CrO₃ may be recognised by acidifying with HC₂H₃O₂, and precipitation with Pb(C₂H₃O₂)₂. Ignited Al₂O₃ and Fe₂O₃ are soluble by continued heating with a mixture of equal volumes of concentrated H₂SO₄, and H₂O.—Ignited SnO₂ is not altered by fusion with Na₂CO₃. It must be fused with six times its weight of a mixture of equal parts of Na₂CO₃ and S in a porcelain crucible. The fused mass is dissolved in water and SnS₂ precipitated on addition of HCl, which is further

investigated as in sec. 43.

55. Ag and Pb are present.—a. The substance is repeatedly boiled with a concentrated solution of NH4(C,H3O2) which extracts PbSO4 and PbCl2. The Pb may be recognised in the filtrate by H2S; the Cl, by AgNO3; the H₂SO₄ by means of BaCl₂. The residue, insoluble in NH₄(C,H₃O₂) is treated with NH₃ by which AgCl is extracted; its presence in the filtrate may be confirmed by addition of HNO3. AgBr, and AgI are, however, almost insoluble in NH3; the solution is therefore treated with an aqueous solution of KCN. By acidulating the solution in KCN with HNO3, the dissolved Ag is precipitated. The united precipitate of AgCl, AgBr, and AgI is fused in a porcelain crucible with Na2CO3, and in the aqueous extract, Cl, Br, and I are tested for. It may, instead, be treated with Zu, and very dilute H₂SO₄ (see. 63).

The residue, from which Ag and Pb have been removed,

is investigated as in sec. 54.

NaHCO₃ (were Na₂CO₃ used, some Pb would be dissolved), and allowed to stand for some hours in the cold. It is then filtered, washed with cold water, and HCl, and H₂SO₄, tested for in the filtrate as usual. The residue is treated with dilute HNO₃, when Pb, Ca, and Sr are dissolved, while BaSO₄, AgCl, AgBr, and AgI are left insoluble. The insoluble residue is fused with Na₂Co₃ in a porcelain crucible, and the fused mass treated repeatedly with water; H₂SO₄, HCl, HBr, and HI are dissolved,

while BaCO₃ and AgCl remain behind, and may be separated by HCl. The presence of BaSO₄ may also be recognised in the original mixture, by repeated boiling with fresh portions of Na₂CO₃ (XXXVI. 3, p. 31); or the silver salts may be extracted with KCN and the residue of BaSO₄ decomposed with Na₂CO₃.

C.—DETECTION OF ACIDS.

57. The following substances are soluble in water:—

1. All salts of the following acids; HNO_3 , $HClO_3$, HNO_2 H_2SO_4 (except $BaSO_4$, $SrSO_4$, $CaSO_4$, $PbSO_4$), HCl (except AgCl, Hg_2Cl_2 , $PbCl_2$), HBr (except AgBr, Hg_2Br_2), HI (except AgI, HgI_2 , Hg_2I_2 , Cu_2I_2), $HCHO_2$ (formic acid), $HC_2H_3O_2$.

2. The alkali-salts of the following anhydrides:— CO_2 , Cr_2O_3 , As_2O_5 , P_2O_5 , SO_2 , SiO_2 , Bo_2O_3 ; and of the acid $H_2C_2O_4$. All other salts, with the exception of silicates,

are soluble in acids.

3. The *sulphides* and *cyanides* of the alkalies.

 CO_2 , H_2S , SO_2 , As_2O_3 , As_2O_5 , and CrO_3 may be discovered in the usual course of analysis; CO_2 , H_2S , SO_2 are evolved as gases, on treating their salts with HCl. CO_2 renders lime water turbid; H_2S blackens paper moistened with a solution of $Pb(C_2H_3O_2)$; and SO_2 has the same effect on paper, which has been dipped into a solution of $Hg_2(NO_3)_2$.

Detection of HCl, HNO₃, H₂SO₄, H₃PO₄.

58. H_2SO_4 . The aqueous solution of the substance is acidified with HCl, and $BaCl_2$ added. If the solution is acid already, no more need be added. White precipitate; $BaSO_4$. If Pb, Ag, or Hg_2O be present, the solution must be acidified with HNO_3 , and $Ba(NO_3)_2$ added.

HCl. The aqueous solution is acidified with HNO₃, and AgNO₃ added. The white, curdy precipitate must

be completely soluble in NH₃.

HNO₃. A few drops of a solution of FeSO₄ are mixed

with concentrated H₂SO₄; the mixture is thoroughly cooled, and the aqueous solution of the substance poured on to the top of the denser fluid. Reddish-brown ring at the point of contact: HNO₃ (vide IV. 6, p. 11).

H₃PO₄. As H₃PO₄ is not to be distinguished from H₃AsO₄ by the following tests, if present, the latter must

be removed by means of HoS.

59. a. A substance, soluble in water, can contain only alkali-salts of H₃PO₄. To the aqueous solution, NH₄Cl, NH₃, and MgSO₄ are added. Precipitate: Mg(NH₄)PO₄.—If the solution contain CO₂, it must first be removed by HCl, else MgCO₃ might be precipitated. The acidified solution is boiled, and treated as before.

b. If the substance be soluble only in acids, NH₃ is added to the solution till a precipitate is formed. It is dissolved in a small quantity of HC₂H₃O₂, some NaC₂H₃O₂ is added, and then one drop of FeCl₃. Yel-

lowish-white, gelatinous precipitate: FePO.

Another method:—The solution of the substance—best in HNO₃—is treated as in sec. 30, p. 46. The precipitate of ammonic phospho-molybdanate is dissolved in NH₃, NH₄Cl and MgSO₄ added, and the phosphoric acid precipitated as Mg(NH₄)PO₄. The precipitate of Mg(NH₄)PO₄ should, when filtered off, acquire a yellow colour, when treated with AgNO₃(Ag₃PO₄).

Detection of Other Acids.

60. Some of the solid substance in a test-tube is moistened with concentrated H₂SO₄. If an immediate

reaction is not observed, heat gently.

1. Colourless gas escapes: HCl, HNO₃, CO₂, H₂S, SO₂ (from sulphites and hypo-sulphites), HFl (the vapours attack the glass), CO (by decomposition of cyanides or organic acids).

2. Gas which has a colour escapes: Brownish-yellow: Br;—red: HNO₂;—violet: I;—greenish-yellow: HClO

and HClO₃.

3. Acids which are not volatile: H₃PO₄, SiO₂, Bo₂O₈ (vide VIII. 6, p. 13).

4. The substance turns black: Organic acids.

61. HI and HBr. In order to detect I, the aqueous solution of the substance is acidified with H₂SO₄, some boiled starch, and a drop of NO, are added. If iodine be present, the solution assumes a blue colour. Instead of using starch, some CS2, or benzole, may be added, and the mixture, after addition of KNO2, well shaken. If the CS₂, or benzole, have, on settling, a rose colour, I is present.—To detect Br, CS, is added to the solution, and then chlorine water, or solution of NaClO drop by drop. Shake after each addition of chlorine, and notice if the CS, has a yellow colour; if such be the case Br is present. If iodine be present at the same time, the rose colour is first seen. Chlorine water is added till the rose colour disappears. If a drop more be added, the yellow colour, produced by bromine, will become apparent.

62. Cl, Br, and I.—I and Br are first tested for as in sec. 61. In order to test for Cl, the solution, which must only contain alkaline metals (if others be present, they must be removed by boiling, or fusing with excess of Na₂CO₃) is treated with Na₂CO₃, and K₂Cr₂O₇, evaporated to dryness, and the residue fused in a porcelain crucible. If iodine be present, the vapours will here escape. The melted mass is poured out, broken into small pieces, and heated in a small retort with an excess of very concentrated H₂SO₄. Reddish-brown drops distil over (CrO₂Cl₂, as well as Br and I). Water is carefully added, and the solution tested for Cr, by boiling with alcohol, and precipitating with NH₃ (XV. 9, 11, p. 17). If Cr

is found, Cl was present in the original substance.

63. AgCl, AgBr, AgI.—AgBr has a light yellow colour, and is but slightly soluble in NH₃; AgI is yellow and almost insoluble in NH₃. If a solution, containing

Cl, Br, and I, be treated with excess of AgNO₃, NH₃ added to the precipitate, dissolves only AgCl, with a small quantity of AgBr. The ammoniacal solution, when treated with HNO₃ gives a precipitate of AgCl, with which a little AgBr is mixed. When AgI is treated with NH₃ it grows white, on account of the absorption

of NH₃.

To recognise AgCl, AgBr, or AgI, in presence of each other, the mixture, previously fused, is moistened with dilute H₂SO₄, and a small piece of Zn laid on the top. It is allowed to stand for 24 hours; the solution is then poured off, the residue well washed with H₂O, and the filtrate boiled with excess of Na₂CO₃. The fluid is filtered from the precipitate of ZnCO₃; the solution contains NaCl, NaBr, NaI, and is treated further as in sec. 62.

64. HFl.—The substance, reduced to fine powder, is heated with concentrated H₂SO₄ in a dry test-tube. The vapours of HFl make the sides of the glass tube dim. A better method is to form a thick paste, by mixing the powdered substance with concentrated H₂SO₄, and warm it gently in a platinum crucible, covered by a watch glass, which has been coated with wax on its convex side, and some scratches made on it. On to the concave side some water is poured, in order better to condense the vapours. After five or ten minutes, the watch-glass is removed, the most of the wax melted off by rubbing the glass, slightly heated, with filter paper, and thoroughly cleaned with alcohol. If HFl was present, the glass will have been distinctly etched. See sec. 85, p. 64.

65. 2HFl, SiFl₄.—All salts of this acid, with exception of the K, Na, and Ba salts are soluble in water. When heated with H₂SO₄, a mixture of HFl, and SiFl₄ escapes, which acts on the glass of the test tube. When heated in a test tube the *dry* salts evolve SiFl₄, which, when led into water, deposits a gelatinous precipitate of SiO₂ (vide sec. 85, p. 64). The fluosilicates, when heated with excess of an alkali, are decomposed into SiO₂, and the

alkaline fluoride. If fused with Na₂CO₃, NaFl, and sodic silicate is formed. If heated with microcosmic salt, before the blowpipe, they give no skeleton, for all Si volatilises

as SiFl₄.

66. SO_2 , and $H_2S_2O_3$. The salts of both of these acids, when heated with H_2SO_4 evolve SO_2 which may be recognised by its smell, and by its reaction on paper moistened with a solution of $Hg_2(NO_3)_2$, which is blackened by liberation of metallic mercury. The reaction is, of course,

possible, only when H₂S is absent.

 SO_2 . The aqueous solution of an alkaline sulphite is made weakly acid with $HC_2H_3O_2$, some $ZnSO_4$, and sodic nitro-prusside. The fluid assumes a red colour. If 4KCN, $FeCN_2$ be present, the colouration is more distinct; if a large quantity of SO_2 be present, a purple coloured precipitate is formed. To detect small quantities of SO_2 , or $H_2S_2O_3$, metallic Al, or pure Zn is treated with HCl, or H_2SO_4 , and the substance added. H_2S is evolved, which may be recognised by its behaviour to paper moistened with $Pb(C_2H_3O_2)_2$.

 $H_2S_2O_3$. The salts of this acid, with exception of BaS_2O_3 , and PbS_2O_3 are soluble in water. The behaviour of salts of $H_2S_2O_3$, with regard to HCl, and $Pb(C_2H_3O_2)_2$

is characteristic (vide XXXIII. 2, 3, p. 29).

H₂S, H₂S₂O₃, and SO₂. If salts of these acids are mixed, and it is required to detect the acids, H₂S is expelled first, and ZnSO₄. In a part of the filtrate from the ZnS, the hyposulphurous acid is detected, by the solution giving a precipitate of S, when acidified with HCl. Another portion is tested for SO₂ with sodic nitro-prusside.

67. HClO₃. The presence of chlorates may be discovered by their behaviour on being heated; by the reaction with concentrated H₂SO₄, and by the characteristic deportment, when treated with indigo and SO₂ (vide XXX.

p. 28).

HClO₃ and HNO₃. HClO₃ may be recognised in presence of HNO₃ by the reaction with indigo and SO₂. To confirm HNO₃, the substance is treated with excess of

NaOH, and the solution boiled with a mixture of one part iron filings, and two parts Zn. NH₃ formed by

the reduction of the HNO₃ is evolved.

68. HClO (present in "chloride of lime"). The salts have the odom of Cl, and bleach indigo and litims. If MnSO₄ be added to a solution of a hypochlorite, MnO₂ is thrown down. If a dry hypochlorite be heated, Cl is evolved. If a hypochlorite, suspended in water be heated, after ad-

dition of a drop of Co(NO₃)₂, O is evolved.

69. HNO₂. Nitrites, heated with concentrated H₂SO₄, give off brownish-red vapours (N₂O₃). With dilute H₂SO₄, only NO is evolved. The aqueous solution of the substance is acidified with H₂SO₄, some starch paste and KI added. Blue colouration; HNO₂.—An aqueous solution of FeSO₄ turns brown, on addition of a nitrons solution, even if no H₂SO₄ be added. This is a reaction which distinguishes nitrites from nitrates.

70. Bo₂O₃, vide VIII. 5, 6, p. 13.

ORGANIC ACIDS.

The salts of all organic acids, except oxalic acid, blacken, when heated.

- 71. It is most advantageous in detecting organic acids (as indeed all acids), to have only alkaline salts in solution. Hence, if other metals are present, the substance is boiled with excess of Na₂CO₃. The filtrate, which contains all the acids, after being concentrated by evaporation, is made weakly acid with HCl, to remove excess of Na₂CO₃. It is then gently warmed, to remove the dissolved CO₂; NH₃ is added till an alkaline reaction is apparent, and then CaCl₂. After a lapse of fifteen or twenty minutes, the precipitate of CaC₂O₄, and CaC₄H₄O₆ filtered off (sec. 72). The filtrate is treated as directed in sec. 73.
- 72. The precipitate of CaC₂O₄, and CaC₄H₄O₆ is filtered off, washed, and treated with NaOH at the usual temperature. CaC₄H₄O₆ dissolves, and when the solution

is filtered off and boiled, reprecipitates. CaC₂O₄ remains undissolved.

73. The filtrate from the precipitate of ealcie salts is heated for some time, to boiling. Precipitate: $Ca_3(C_6H_5O_7)_2$ (calcic citrate). The precipitate is filtered off while boiling (the filtrate is treated as in sec. 74); it must be soluble in HCl, and after saturation with NH₃, be again precipitated by boiling.

74. To the filtrate, three times its volume of alcohol is added. The precipitate of ealcic succinate $(CaC_4H_4O_4)$ is filtered off, and washed with alcohol. The aqueous solution gives a precipitate of ferrie succinate, when

treated with FeCl₃.

75. Formic and acetic acids.—If no volatile acids be present, the substance is distilled with dilute H₂SO₄; the distillate is neutralised with Na₂CO₃, and evaporated to dryness. Part of the residue is heated in a test-tube with dry As₂O₃; if an extremely unpleasant smell of kakodyl be perceived, acetic acid is present. It may also be tested for by means of alcohol and H₂SO₄ (XXXVIII. 4, p. 32). The remainder of the residue is dissolved in H₂O, and boiled with AgNO₃. Black precipitate of Ag: HCHO₂.

76. Oxalic acid.—The aqueous solution of an alkaline oxalate, when acidified with HC₂H₃O₂, gives, on addition of CaCl₂, a white precipitate of CaC₂O₄ (vide X. 8, p. 14). All other oxalates must be decomposed by boiling with Na₂CO₃, or by H₂S, or (NH₄)₂S, and then tested

in the same manner.

77. Tartaric acid.—A concentrated neutral solution of a tartrate is acidified with $HC_2H_3O_2$, and $KC_2H_3O_2$ added. If the original solution be acid, it need not be

further acidified. Precipitate: KH.C4H4O6.

78. Citric acid.— $H_3C_6H_5O_7$. If lime-water be added to a solution of free eitrie acid, till the reaction is alkaline, and then boiled, a precipitate of $Ca_3(C_6H_5O_7)_2$ is thrown down, which dissolves on the solution cooling.

79. Succinic acid. — H₂C₄H₄O₄, CaC₄H₄O₄, and

BaC₄H₄O₄ are soluble in H₂O, but not in alcohol.—The brown precipitate which FeCl₃ produces in the neutral solution of a succinate, is filtered off, washed out, and removed to a test tube; some NH₃ is added; Fe(OH)₃ is precipitated; in the filtered solution BaCl₂, and a considerable amount of alcohol produce a precipitate of

BaC₄H₄O₄.

80. Acetic acid.—Reaction of the salts with H₂SO₄ and C₂H₆O (vide XXXVIII. 3, 4, p. 32).—In the neutral solution of the alkaline acetates, FeCl₃ gives a red colouration, which disappears on boiling, with separation of a brown precipitate.—AgC₂H₃O₂ is slightly soluble in cold water; it dissolves more easily in hot water.—If dry NaC₂H₃O₂ be heated with As₂O₃, a penetrating, extremely disagreeable smell of kakodyl may be perceived

 $(As[CH_3]_s).$

81. Formic acid.—H.CHO₂. Formiates, when heated with dilute H₂SO₄, evolve free formic acid which may be recognised by its smell. When heated with alcohol and concentrated H₂SO₄, formic ether (C₂H₅CHO₂) is evolved, which has a smell of arrack.—If a dry formiate be heated, CO is evolved.—AgNO₃ added to the aqueous solution of a formiate, produces a white precipitate (AgCHO₂), which, when boiled, deposits metallic silver (2AgCHO₂) = 2Ag + CO₂ + HCHO₂).—If NH₃ be present, however, no Ag is precipitated.—If formic acid or an alkaline formiate be warmed with a solution of mercuric chloride, mercurous chloride (calomel) is thrown down.—With FeCl₃, HCHO₂ deports itself in the same manner as HC₃H₃O₂.

 $HCHO_2$ and $HC_2H_3O_2$. In a mixture of formic and acetic acids, the latter may be recognised by the kakodyl reaction; the former by its behaviour with $HgCl_2$ and $AgNO_3$ — $Pb(CHO_2)_2$ is soluble with difficulty in water, and insoluble in alcohol; $Pb(C_2H_3O_2)_2$ is easily soluble

in both of these solvents.

ANALYSIS OF SILICATES.

The presence of SiO₂ may be recognised in the bead of microcosmic salt, by the preliminary examination (vide XXXI. 3, p. 29). Silicates are either only partly decomposed by inorganic acids, or not attacked at all:

82. Silicates which are decomposable by acids.—(Water glass, zeolite, slags). The substance, reduced to fine powder, is warmed with concentrated HCl, and stirred frequently; it is then diluted with H₂O, and evaporated to dryness. The dry residuc is moistened with concentrated HCl, and warmed; water is then added, the fluid is boiled, and the SiO₂ filtered off. All the bases, formerly existing as silicates, are to be found in the solution as chlorides, and may be separated in the ordinary way. Pure SiO₂ must dissolve in Na₂CO₃, by persistent boiling (vide sec. 86).

83. Silicates which are not attacked by acids.—a. Separation of the SiO₂. The finely powdered silicate is heated before the blowpipe, with four times its weight of dry Na₂CO₃, till quite liquid. The melted mass is treated with HCl, evaporated to dryness without being filtered, and the residue, after being moistened with concentrated HCl, (to change any insoluble oxichlorides which may have been formed during the evaporation, into soluble

chlorides), and proceeded with as in sec. 82.

84. b. Determination of the alkalies.—An intimate mixture of one part of the silicate and five parts of CaFl₂, is stirred with H₂SO₄, till it becomes a thick paste. The mixture is at first gently warmed, and then heated more strongly till the excess of H₂SO₄ has evaporated. The dry mass is boiled several times with fresh portions of water, and filtered; the H₂SO₄ which is in solution, is removed by adding a solution of BaCl₂, and without filtering the fluid, lime-water is added, till an alkaline reaction is perceivable. The liquid is boiled;

the excess of CaO, and BaO precipitated with NH3 and

(NH₄),CO₃, and treated further as in sec. 8, p. 40.

85. HFI. Silicates, which contain fluorides, evolve SiFl, when treated with concentrated sulphuric acid. If a glass rod, on the end of which a drop of water is hanging, be held close over the mixture, the water becomes covered with a film of SiO₂.—The silicate is fused with Na, CO, as in sec. 83; but water is used to dissolve the fused mass. The aqueous solution, containing all the acids which may be present in the silicate (Bo,O, HFI, SiO, TiO, etc.), is treated with HCl, till a distinctly acid reaction is apparent. An excess must be avoided, as CaFl, is somewhat soluble in ammonia salts, especially in NH, Fl. The liquid is now warmed to expel the CO, which is dissolved, and NH₃ is added till the reaction is alkaline. The precipitate of SiO2, Al2O3, etc., is filtered off, and CaCl₂ added to precipitate CaFl₂, which is confirmed as in sec. 64.—CaFl, is not decomposed by fusion with Na₂CO₃, unless SiO₂ be present.

86. Titanic acid.—TiÕ₂ (BaSO₄, SrSO₄, Al₂O₃, etc.). TiO₂, which frequently accompanies silica, is found partly in the residue of SiO₂, and is partly precipitated with

Fe₂O₂, and Al₂O₃.

a. TiO_2 and SiO_2 .—The SiO_2 , containing TiO_2 , is boiled for some time with concentrated H_2SO_4 , till some has evaporated. The mass is allowed to cool thoroughly, and poured, drop by drop, into an excess of H_2O , to avoid heating the fluid. It is then filtered, the most of the acid neutralised with NaOH, and the solution, which is still acid, boiled for some time. Precipitate: TiO_2 .

Or they may be separated by the following method: The mixture of SiO₂ and TiO₂ is evaporated several times with HFl and HCl in a platinum crucible. If a residue remains, it consists of TiO₂, and such insoluble substances as BaSO₄, Al₂O₃, SnO₂, Cr₂O₃, etc., which are not decomposable by fusion with Na₂CO₃. The residue is fused with KHSO₄ in a platinum crucible, and the melted mass treated with cold water; BaSO₄ and SrSO₄

remain undissolved; the filtered solution is boiled for some time. TiO₂ is precipitated, while Al₂O₃, and usually a trace of TiO₂, remains in solution.

b. $\mathring{\text{TiO}}_2$, Al_2O_3 , $\text{Fe}_2\mathring{\text{O}}_3$.—The precipitate of Fe_2O_3 , containing TiO_2 , is dissolved in dilute H_2SO_4 , and nearly neutralised with NaOH; a few drops of HNO, are then added to the solution; it is diluted with water, and boiled for some time. Precipitate: ${\rm TiO_2}$.

TiO₂, heated in the oxidising flame of the blowpipe, with microcosmic salt, gives a yellow bead, which becomes colourless on cooling; in the reducing flame, a bead yellow when hot, which turns violet on cooling. The reaction is made more distinct if some tinfoil be added to the bead. If Fe be present, the bead is red. It is usually difficult to detect TiO2, by fusing the silicate alone with microcosmic salt.—An acid solution of TiO, turns blue in presence of Zn; if ammonia be added, a blue precipitate of Ti₂O₃ is thrown down.—If the precipitate of TiO, be treated with Zn and HCl, it assumes a blue colour.

ANALYSIS OF CYANIDES.

87. Of all the simple cyanides, only HgCN₂ and the alkaline cyanides are soluble in H₂O. All cyanides, when warmed with concentrated HCl, give off free HCN; it may be recognised by its smell. Hence the presence of cyanides may always be ascertained in dissolving the substance. Some of the double cyanides, e.g., potassic ferrocyanide, or ferricyanide, evolve only a part of their cyanogen as HCN. All cyanides, except those of the alkalies are decomposed on ignition.

88. Cyanogen is detected in the alkaline cyanides, as in XXXVII. 3, p. 32. In a mixture of ferrous and ferric salts, free HCN gives no blue precipitate. Potassic ferricyanide must first be formed by addition of excess of alkali. Cyanogen may be detected in Hg(CN)2, after the mercury is precipitated with H2S. AgNO3 gives no precipitate of AgCN, when added to an aqueous solution of Hg(CN)₂.—AgCN may be decomposed by ignition, and hence it differs from AgCl, AgBr, and AgI. Cyanogen may be detected in other cyanides by distilling with HCl, adding excess of NaOH to the distillate, and proceed as in XXXVI. 3. Instead of the latter method, the dry cyanides may be fused with Na₂CO₃ in a porcelain crucible, the melted mass dissolved in water, and

the solution treated as directed above.

89. Double cyanides of iron may be easily decomposed by boiling with NaOH. The precipitate consists of the bases, Fe₂O₃, etc., which may be separated from each other in the usual manner; the solution contains 4KCN, FcCN₂, 3KCy, FeCN₃, and the bases which are soluble in NaOH (PbO, ZnO, Al₂O₃). In testing for cyanogen in this solution, these oxides must be removed with H₂S. The solution is then acidified with HCl, and FcCl₃ added to one portion of the solution, to test for 4KCN, FcCN₂; while 3KCN, FcCN₃ is tested for in another solution with FeSO₄. Turnbull's blue, 3FcCN₂, 2FcCN₃ (sec. 24), is decomposed, when boiled with NaOH into Fe(OH)₂ and potassic ferricyanide.

90. If it is required to establish the presence of these metals alone, which are in combination with cyanogen, the substance must be heated with a mixture of three parts of concentrated H_2SO_4 , and one part of water, till the excess of H_2SO_4 has volatilised. The residue is dissolved in HCl, and treated as usual. The alkalics which are present in a few insoluble cyanides, and which resist the solvent action of H_2O and of dilute acids, may also

be detected in this manner.

INDEX.

ACETIC acid, 32, 62. detection of, 63. Acids, detection of, 56. Alkalies, detection in silicates, 64. Group I., 39. separation from Ba and Sr,40. Al. Fe, Cr, separation from Mn and Zn, 44. Alum, 16. Mumina reactions, 16. Aluminium before the blowpipe, 45. separation from Mu, Zu, 13 Fe, 43. Ammonia, detection of, 40. Ammonic-aluminic-sulphate, 16. chloride, 11. sulphide, 41. Antimony, 26. and bismuth, 48. separation from Sn, 52. chloride, iodide, and bromide, 55. Argentic cyanide, 67. Arsenic, 27.

Arsenius and arsenic acids, 52.

separation from Sb, Sn, 51,53.

detection of, 51.

Baric, carbonate as precipitant, 44.

,, chloride, 15. ,, sulphate, 31, 54, 56.

Barium, detection of, 40.
,, flame-reaction, 37.

,, separation from strontium, 40. Disninth, 22.

,, and antimony, 48.
,, detection of, 50.
,, with borax bead, 36.
Borax beads, 36.
Bromine, chlorine, and iodine, 53.

CADMIUM, 22.
,, with borax bead, 36.
Calcium, detection of, 41.
,, flame-reaction, 37.
Calcic carbonate, 14.
,, sulphate, 16.

Ca, separation from Ba and Sr, 40. Carbon, detection of, 54. Carbonic acid, 57, 10. Chlorine reactions, !. iodine, and bromine, 58 Chileric acid, 60. ,, reactions, 28. Chromium reactions, 17. with borax boad, 36. Al, Fe, from Mn, Zn, 44. Chromic acid, 48. Citric acid, 62. Cobalt with borax bead, 36. detection of, 42. Cobaltic nitrate, 21. Colouration of the flame, 37, Copper, 22.
,, flame-reaction, 37.

flame-reaction, 37.

with borax bead, 36.

separation from Cd, 50.

Course of analysis, 38.

Cyanides, analysis of, 66.

DETECTION of bases, 38 Dry Tests, 33.

EVOLUTION of gas, during solution, 27.

FERROCYANIDES, 67. Flame, colouration of, 37. Formic acid, 62, 63.

Group I., alkalies, 39. ., II., 40.

Hydrosulphuric acid, 60.

,, III., IV., 41. ,, V., 49. ,, VI., 51.

i, VI., 51.

Hydric-di-sodic phosphate, 12.
, potassic oxalate, 29.

Hydrobromic acid, 58.

Hydrochloric acid, detection of, 56.

Hydrofluoric acid, 59.
detection in silicates, 65.

Hydrofluosilicic acid, 59.

,,

Hypochlorous acid, 61. Hyposulphurous acid, 29, 60.

INCRUSTATIONS, 35. lusoluble compounds, 54. lodine reactions, 30.

,, t Iron, 18. bromine and chlorine, 58.

,, with borax bead, 36. ,, separation from Mn, Zn, 43, 44.

LEAD, 21.

detection of, 50. with borax bead, 36. Lithium, detection of, 39.

flame reaction, 37. separation from K, Na, 40. Lithic carbonate, 40.

MAGNESIUM, detection of. 41. " separation from Ba and Sr, 40. Magnesic sulphate, 13. Manganesc, separation from Al, Zn, Manganese and Zn, separation from Al, Fe, Cr, 44. Manganie dioxide, 19. Mercury, 23.

detection of, 49. Mercuric oxide, 50. Mercurous oxide, 50. Metals, solution of, 38. Mctallic beads, 34.

with incrustation, 35. Microcosmic salt, beads.

NICKEL, detection of, 42. ,, with borax bead, 36., soluble in (NH4)2S, 41. Nickelic sulphate, 20. Nitric acid, detection of, 56.

reactions, 11.
and chloric acid, 60. Nitrous acid, 61.

ORGANIC acids, 61. Oxalic acid, 62.

reactions, 29. Oxalates of Ca, Ba, Sr, Mg, 46.

Phosphoric acid, reactions, 12. detection of, 57. Phosphates of Ba, Sr, Ca, Mg, 46.

Plumbic acctate, 32. Potassium, detection of, 39. reactions, 10. flame reactions, 37. Potassic chlorate, 28., cyanide, 31. " dichromate, 17. , , ferrocyanide, 18. , , iodide, 30.

mitrate, 10. 2.3 platinic chloride, 11. 23 sulphocyanide, 18. ,,

SILICIC acid, reactions, 28. with borax bead, 36. Silicates, analysis of, 64. Silver, 24.

with borax bead, 36. detection of, 50. Sodium, detection of, 39. " flame reaction, 37.

reactions, 9. Sodic carbonate, 10.

chloride, 9. diborate, 13. hyposulphite, 29.

nitrate, 12. silicate, 28. sulphate, 10.

Solution of the substance, 37. Stannic oxide, 55.

Strontium, flame reactions, 37. separation from Ba, 40. Strontic chloride, 15.

sulphate, 30, 54. Succinic acid, 62. Sulphur, detection of, 54. Sulphuric acid, detection of, 56. reactions, 10. Sulphurous acid, 60.

TARTARIC acid, 11, 62. Tin, 25. Titanium with borax bead, 36, 66, Titanic acid, 65, 66.

URANIUM, 44. with borax bead, 36.

ZINC, separation from Mn, 44.
Al, Mn, 43.
Al, Fe, Cr, 44.

reactions, 20.

WILLIAM COLLINS TRINTERS, GLASGOW.

WORKS ON CHEMISTRY

IN

COLLINS' ELEMENTARY SCIENCE SERIES.

In Fcap. Svo, fully Illustrated, cloth lettered, price 1s. each Vol.

INORGANIC CHEMISTRY. By Dr W. B. KEMSHEAD, F.R.A.S., F.G.S., Dulwich College, London.

ORGANIC CHEMISTRY. By W. Marshall Watts, D.Sc. (London), Grammar School, Giggleswick.

PRACTICAL CHEMISTRY. By John Howard, Head Master, Islington Science School, London.

WORKS ON CHEMISTRY

IN

COLLINS' ADVANCED SCIENCE SERIES.

In Post 8vo, averaging 350 pp., fully Illustrated, cloth lettered, price 2s. 6d. each Volume.

INORGANIC CHEMISTRY. By T. E. Thorpe, Ph.D., F.R.S.E., Professor of Chemistry, Andersonian University, Glasgow. 2 vols.

ORGANIC CHEMISTRY. By JAMES DEWAR, F.R.S.E., F.C.S., Lecturer on Chemistry, Edinburgh.

COLLINS' SERIES OF FIRST-CLASS SCHOOL ATLASES,

COLLING OFFICE OF LINE OFFICE COLLEGE WITH		. ,
Carefully Constructed and Engraved from the best and latest Authorities, Beautifully Printed in Colours, on Superfine Cream Wove Paper.		
MODERN GEOGRAPHY—Crown Series.	s. 0	<i>l</i> .
MAY FIRST ATLAS consisting of 12 Maps, 9 inches by 72 inches,		6
folded 8vo, in Neat Wrapper, THE PRIMARY ATLAS, consisting of 16 Maps, 9 inches by 7½ inches, 4to, Stiff Wrapper, THE POCKET ATLAS, consisting of 16 Maps, folded in 8vo, and	0	6
THE POCKET ATLAS, consisting of 16 Maps, folded in 8vo, and	I	0
mounted on Guards, cloth lettered, THE JUNIOR, OR YOUNG CHILD'S ATLAS, consisting of 16	1	0
Maps, 4to, with 16 pp. of Questions on the Maps, in Neat Wrapper, THE STANDARD SCHOOL ATLAS, consisting of 24 Maps,		
Crown 4to, in Neat Wrapper, THE PROGRESSIVE ATLAS, consisting of 32 Maps, 9 inches by	I	0
THE PROGRESSIVE ATLAS, consisting of 32 waps, 9 menes by	2,	0
7½ inches, 4to, cloth lettered, THE CROWN ATLAS, consisting of 32 Maps, on Guards, with	2	6
Index, 8vo, cloth lettered, THE NATIONAL ATLAS, consisting of 32 Maps, 4to, with a		6
Copious Index, cloth lettered,	2,	O
MODERN GEOGRAPHY—Imperial Series.		
THE SELECTED ATLAS, consisting of 16 Maps, Imperial 4to, 11;	¥	6
by 13 inches, Stiff Cover,		,
8vo, cloth lettered, THE ADVANCED ATLAS, consisting of 32 Maps, Imperial 4to,	2	0
THE ADVANCED ATLAS, consisting or 32 Maps, imperial 400,	3	6
cloth lettered, THE ACADEMIC ATLAS, consisting of 32 Maps, Imperial 4to,	5	0
with a Copious Index, cloth lettered, THE STUDENT'S ATLAS, consisting of 32 Maps, and 6 Ancient		
Maps, with a Copious Index, Imperial 8vo, cloth lettered, THE COLLEGIATE ATLAS, consisting of 32 Modern, 16 Historical,	0	0
and 2 Ancient Maps, mounted on Guards, with a copieds		6
Imperial 8vo, cloth lettered,	7	U
Letterpress on Historical Geography, by W. F. Collie, 22121, Schmitz I.I. D. with Copious Indices.		
Imperial 8vo, Cloth mounted on Guards,	10	6
PHYSICAL GEOGRAPHY—Demy Series.		
THE PRIMARY ATLAS OF PHYSICAL GEOGRAPHY, 10		
		0
Maps, Demy 4to, 9 by 11 inches, Sun Cott, THE POCKET ATLAS OF PHYSICAL GEOGRAPHY, 16 Maps, on Guards, Demy 8vo, cloth,	z	. 0
London, Edinburgh, and Herriot Hill Works, Glasgo	w.	
London, Edinburgh, and	-	

1. Atrilion - no 2 Describe breefs comple Locality of pression 2 aleman frantis as La D of Call programs

COLLINS' SERIES OF FIRST-CLASS SCHOOL ATLASES. Carefully Constructed and Engraved from the best and latest Authorities, and Beautifully Printed in Colours, on Superfine Cream Wove Paper. MODERN GEOGRAPHY—Crown Series. s. d. MY FIRST ATLAS, consisting of 12 Maps, 9 inches by 72 inches, folded 8vo, in Neat Wrapper, THE PRIMARY ATLAS, consisting of 16 Maps, 9 inches by 72 inches, 4to, Stiff Wrapper, ... 6 THE POCKET ATLAS, consisting of 16 Maps, folded in 8vo, and mounted on Guards, cloth lettered, THE JUNIOR, OR YOUNG CHILD'S ATLAS, consisting of 16 Maps, 4to, with 16 pp. of Questions on the Maps, in Neat Wrapper, THE STANDARD SCHOOL ATLAS, consisting of 24 Maps, Crown 4to, in Neat Wrapper, THE PROGRESSIVE ATLAS, consisting of 32 Maps, 9 inches by 7½ inches, 4to, cloth lettered, THE CROWN ATLAS, consisting of 32 Maps, on Guards, with 6 Index, 8vo, cloth lettered, ... THE NATIONAL ATLAS, consisting of 32 Maps, 4to, with a 6 Copious Index, cloth lettered, MODERN GEOGRAPHY—Imperial Series. THE SELECTED ATLAS, consisting of 16 Maps, Imperial 4to, 11 6 by 13 inches, Stiff Cover, ... THE PORTABLE ATLAS, consisting of 16 Maps, folded Imperial 8vo, cloth lettered, THE ADVANCED ATLAS, consisting of 32 Maps, Imperial 4to, 8vo, cloth lettered, ... 0 cloth lettered, THE ACADEMIC ATLAS, consisting of 32 Maps, Imperial 4to, with a Copious Index, cloth lettered, THE STUDENT'S ATLAS, consisting of 32 Maps, and 6 Ancient Maps, with a Copious Index, Imperial 8vo, cloth lettered, THE COLLEGIATE ATLAS, consisting of 32 Modern, 16 Historical, and 2 Ancient Maps, mounted on Guards, with a Copious Index, 6 Imperial 8vo, cloth lettered, THE INTERNATIONAL ATLAS, consisting of 32 Modern, 16 Historical, and 14 Maps of Classical Geography, with Descriptive Letterpress on Historical Geography, by W. F. Collier, LL.D.; and on Classical Geography, by L. Schmitz, LL.D., with Copious Indices, Imperial 8vo, Cloth mounted on Guards, 10 PHYSICAL GEOGRAPHY—Demy Series. THE PRIMARY ATLAS OF PHYSICAL GEOGRAPHY, 16 Maps, Demy 4to, 9 by 11 inches, Stiff Cover,

London, Edinburgh, and Herriot Hill Works, Glasgow.

THE POCKET ATLAS OF PHYSICAL GEOGRAPHY, 16 Maps,

on Guards, Demy 8vo, cloth,

COLLINS' SERIES OF SCHOOL ATLASES—CONTINUED.

PHYSICAL GEOGRAPHY—Imperial Series. THE PORTABLE ATLAS OF PHYSICAL GEOGRAPHY, 20	5.	d.
Maps, 11 by 13 inches, mounted on Guards, Imp. 8vo, cloth, THE STUDENT'S ATLAS OF PHYSICAL GEOGRAPHY, 20	3	6
Maps, mounted on Guards. With Letterpress Description and Wood Engravings. By James Bryce, LL.D., F.R.G.S. Imp. 8vo, cl.,	5	0
HISTORICAL GEOGRAPHY.		
THE POCKET ATLAS OF HISTORICAL GEOGRAPHY, 16		
Maps, 63 by 11 inches, mounted on Guards, Imperial 16mo, cloth,	I	6
THE CROWN ATLAS OF HISTORICAL GEOGRAPHY, 16 Maps, with Letterpress Description by Wm. F. Collier, LL.D., Imperial 16mo, cloth,	2	6
THE STUDENT'S ATLAS OF HISTORICAL GEOGRAPHY, 16	4	U
Maps, Letterpress Description by Wm. F. Collier, LL.D., 8vo, cloth,	3	0
CLASSICAL GEOGRAPHY.		
THE POCKET ATLAS OF CLASSICAL GEOGRAPHY TO		
Maps, Imperial 16mo, 61 by 11 inches, cloth lettered, THE CROWN ATLAS OF CLASSICAL GEOGRAPHY 15 Maps	r	6
with Descriptive Letterpress, by Leonhard Schmitz, LL.D., Imperial 16mo, cloth lettered,	2	6
THE STUDENT'S ATLAS OF CLASSICAL GEOGRAPHY 15	2	
Maps, Imperial 8vo, with Descriptive Letterpress, by Leonhard Schmitz, LL.D., cloth lettered,	3	0
SCRIPTURE GEOGRAPHY.		
THE ATLAS OF SCRIPTURE GEOGRAPHY, 16 Maps, with		
Questions on each Map, Stiff Cover.		0
THE POCKET ATLAS OF SCRIPTURE GEOGRAPHY, 16 Maps, 7½ by 9 inches, mounted on Guards, Imp. 16mo, cloth,		_
, 1, , , , , , , , , , , , , , , , , ,		0
BLANK PROJECTIONS AND OUTLINES.		
THE CROWN ATLAS OF BLANK PROJECTIONS, consisting		
of 16 Maps, Demy 4to, on Stout Drawing Paper, Stiff Wrapper, o THE CROWN OUTLINE ATLAS, 16 Maps, Demy 4to, Stout	(6
Diawing raper, Stiff warander	(5
THE IMPERIAL ATLAS OF BLANK PROJECTIONS, consisting of 16 Maps, Imperial 4to, on Stout Drawing Paper, Stiff Wrapper,	6	
THE INTERNIAL OUTLINE ATLAS, 10 Maps. Insperial 4th Stout	(,
Diawing raper, 5thr Cover, 1	6	5
London, Edinburgh, and Herriot Hill Works, Glasgow.		

